Python之数据序列化(json、pickle、shelve)详解

yipeiwu_com6年前Python基础

什么是序列化

什么是序列化,把程序中的对象或者变量,从内存中转换为可存储或可传输的过程称为序列化。在 Python 中,这个过程称为 pickling,在其他语言中也被称为 serialization,marshalling,flattening 等。程序中的对象(或者变量)在序列化之后,就可以直接存放到存储设备上,或者直接发送到网络上进行传输。

序列化的逆向过程,即为反序列化(unpickling),就是把序列化的对象(或者变量)重新读到内存中~

Python中序列化的模块

模块名称 描述 提供的api
json 用于实现Python数据类型与通用(json)字符串之间的转换 dumps()、dump()、loads()、load()
pickle 用于实现Python数据类型与Python特定二进制格式之间的转换 dumps()、dump()、loads()、load()
shelve 专门用于将Python数据类型的数据持久化到磁盘,shelve是一个类似dict的对象,操作十分便捷 open()

json模块

大部分编程语言都会提供处理json数据的接口,Python 2.6开始加入了json模块,且把它作为一个内置模块提供,无需下载即可使用。

json支持的数据格式有限,有int str list dict以及特殊的tuple(会将tuple转为list)

Json模块提供了四个功能:dumps、dump、loads、load

dumps和loads主要是在内存内操作,如下:

import json 
 list = ['a','b','c'] 
 list_str = json.dumps(list)
 print(list_str)   #["a", "b", "c"] 
 list2 = json.loads(list_str)
 print(list2)    #['a', 'b', 'c']

而dump和load是从文件内操作,如下:

import json
 list = ['a','b','c']
 with open('test','w',encoding='utf-8') as f:
   json.dump(list,f) 
 with open('test','r',encoding='utf-8') as f2:
   json.load(f2)

json模块中的字符编码问题

在Python3中,代码中的字符串都是使用 unicode 格式存放的,序列化之后也是以unicode 格式存放,所以序列化和反序列化过程都不存在问题。

Python2中,代码中的字符串是 str类型,str类型 和 unicode类型 的关系如下所示:

unicode -----> encode --------> str(例如为 utf-8编码)

utf-8(例如为 utf-8编码) --------> decode ----------> unicode

所以在Python2中,序列化过程和反序列化过程都有涉及到转码过程(encode和decode),序列化过程 会先将对象中的字符串 使用utf-8 进行解码(decode),转换为unicode类型后,再存放到文件或者字符串中,反序列化过程 会将 json字符串 使用utf-8 编码(encode),然后存放到内存中的变量~

pickle模块

用法与json类似,不过pickle不能跨语言,优点是它支持python所有的数据类型

需要注意的是,pickle是以bytes类型来进行序列化的

import pickle
 list = ['a','b','c']
 list_str = pickle.dumps(list)
 print(list_str)     #b'\x80\x03]q\x00(X\x01\x00\x00\x00aq\x01X\x01\x00\x00\x00bq\x02X\x01\x00\x00\x00cq\x03e.'
 
 list2 = pickle.loads(list_str)
 print(list2)      #['a', 'b', 'c']

而正因为pickle是以bytes类型进行序列化的,所以在用dump和load方法对文件进行写入或者反序列化的时候,要以wb或者rb模式打开,如下:

import pickle
 list = ['a','b','c']
 with open('test','wb') as f:
   pickle.dump(list,f) 
 with open('test','rb') as f2:
   pickle.load(f2)

shelve模块

shelve也是python提供给我们的序列化工具,比pickle用起来更简单一些。 shelve只提供给我们一个open方法,是用key来访问的,使用起来和字典类似。

import shelve
 f = shelve.open('test1')
 f['key'] = {'a':1, 'b':2, 'c':'sss'} #直接对文件句柄操作,就可以存入数据
 f['key2'] = {'d':3, 'e':4, 'f':'ddd'}
 f.close()
 f1 = shelve.open('test1')
 dic1 = f1['key'] #取出数据的时候也只需要直接用key获取即可,但是如果key不存在会报错
 dic2 = f1['key2']
 f1.close()
 print(dic1)
 print(dic2)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

基于python实现聊天室程序

本文实例为大家分享了python实现简单聊天室的具体代码,供大家参考,具体内容如下 刚刚接触python编程,又从接触java开始一直对socket模块感兴趣,所以就做了一个聊天室的小程...

Python面向对象封装操作案例详解

Python面向对象封装操作案例详解

本文实例讲述了Python面向对象封装操作。分享给大家供大家参考,具体如下: 目标 封装 小明爱跑步 存放家具 01. 封装 封装 是面向对象编程的一大特点 面向对象编程的 第一步 ——...

Pandas DataFrame中的tuple元素遍历的实现

pandas中遍历dataframe的每一个元素 假如有一个需求场景需要遍历一个csv或excel中的每一个元素,判断这个元素是否含有某个关键字 那么可以用python的pandas库来...

python tkinter canvas使用实例

python tkinter canvas使用实例

这篇文章主要介绍了python tkinter canvas使用实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 注:在使用 cre...

python+selenium打印当前页面的titl和url方法

dr.title //获取页面title dr.current_url // 获取页面url 代码如下: from selenium import webdriver dr = w...