Pytorch中accuracy和loss的计算知识点总结

yipeiwu_com6年前Python基础

这几天关于accuracy和loss的计算有一些疑惑,原来是自己还没有弄清楚。

给出实例

def train(train_loader, model, criteon, optimizer, epoch):
  train_loss = 0
  train_acc = 0
  num_correct= 0
  for step, (x,y) in enumerate(train_loader):

    # x: [b, 3, 224, 224], y: [b]
    x, y = x.to(device), y.to(device)

    model.train()
    logits = model(x)
    loss = criteon(logits, y)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    train_loss += float(loss.item())
    train_losses.append(train_loss)
    pred = logits.argmax(dim=1)
    num_correct += torch.eq(pred, y).sum().float().item()
  logger.info("Train Epoch: {}\t Loss: {:.6f}\t Acc: {:.6f}".format(epoch,train_loss/len(train_loader),num_correct/len(train_loader.dataset)))
  return num_correct/len(train_loader.dataset), train_loss/len(train_loader)

首先这样一次训练称为一个epoch,样本总数/batchsize是走完一个epoch所需的“步数”,相对应的,len(train_loader.dataset)也就是样本总数,len(train_loader)就是这个步数。

那么,accuracy的计算也就是在整个train_loader的for循环中(步数),把每个mini_batch中判断正确的个数累加起来,然后除以样本总数就行了;

而loss的计算有讲究了,首先在这里我们是计算交叉熵,关于交叉熵,也就是涉及到两个值,一个是模型给出的logits,也就是10个类,每个类的概率分布,另一个是样本自身的

label,在Pytorch中,只要把这两个值输进去就能计算交叉熵,用的方法是nn.CrossEntropyLoss,这个方法其实是计算了一个minibatch的均值了,因此累加以后需要除以的步数,也就是

minibatch的个数,而不是像accuracy那样是样本个数,这一点非常重要。

以上就是本次介绍的全部知识点内容,感谢大家对【听图阁-专注于Python设计】的支持。

相关文章

详解Python time库的使用

详解Python time库的使用

一、时间获取函数 >>> import time >>> time.time() 1570530861.740123 >>> t...

python中requests和https使用简单示例

requests 是一个非常小巧全面的库,应用它可以很容易写出与服务器进行交互的程序,今天遇到了一个问题,与服务器交互时,url都是https开头的,都进行了ssl加密处理,这样一来,就...

Windows下PyCharm2018.3.2 安装教程(图文详解)

Windows下PyCharm2018.3.2 安装教程(图文详解)

安装包 PyCharm 笔者使用PyCharm2018.3.2,请根据机器是64位还是32位来选择对应的PyCharm版本。(相信绝大部分人都可以很从容的来查看自己机器的位数,在这里就不...

Numpy中的mask的使用

Numpy中的mask的使用

numpy中矩阵选取子集或者以条件选取子集,用mask是一种很好的方法 简单来说就是用bool类型的indice矩阵去选择, mask = np.ones(X.shape[0],...

详解Python sys.argv使用方法

详解Python sys.argv使用方法

sys.argv是python用来获取命令行参数的,如在CMD下执行python *.py data,也就是使用python执行脚本时,需要添加的参数 按照Python教程中的做法 编写...