Pytorch中accuracy和loss的计算知识点总结

yipeiwu_com6年前Python基础

这几天关于accuracy和loss的计算有一些疑惑,原来是自己还没有弄清楚。

给出实例

def train(train_loader, model, criteon, optimizer, epoch):
  train_loss = 0
  train_acc = 0
  num_correct= 0
  for step, (x,y) in enumerate(train_loader):

    # x: [b, 3, 224, 224], y: [b]
    x, y = x.to(device), y.to(device)

    model.train()
    logits = model(x)
    loss = criteon(logits, y)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    train_loss += float(loss.item())
    train_losses.append(train_loss)
    pred = logits.argmax(dim=1)
    num_correct += torch.eq(pred, y).sum().float().item()
  logger.info("Train Epoch: {}\t Loss: {:.6f}\t Acc: {:.6f}".format(epoch,train_loss/len(train_loader),num_correct/len(train_loader.dataset)))
  return num_correct/len(train_loader.dataset), train_loss/len(train_loader)

首先这样一次训练称为一个epoch,样本总数/batchsize是走完一个epoch所需的“步数”,相对应的,len(train_loader.dataset)也就是样本总数,len(train_loader)就是这个步数。

那么,accuracy的计算也就是在整个train_loader的for循环中(步数),把每个mini_batch中判断正确的个数累加起来,然后除以样本总数就行了;

而loss的计算有讲究了,首先在这里我们是计算交叉熵,关于交叉熵,也就是涉及到两个值,一个是模型给出的logits,也就是10个类,每个类的概率分布,另一个是样本自身的

label,在Pytorch中,只要把这两个值输进去就能计算交叉熵,用的方法是nn.CrossEntropyLoss,这个方法其实是计算了一个minibatch的均值了,因此累加以后需要除以的步数,也就是

minibatch的个数,而不是像accuracy那样是样本个数,这一点非常重要。

以上就是本次介绍的全部知识点内容,感谢大家对【听图阁-专注于Python设计】的支持。

相关文章

归纳整理Python中的控制流语句的知识点

程序流 Python 解释器在其最简单的级别,以类似的方式操作,即从程序的顶端开始,然后一行一行地顺序执行程序语句。例如,清单 1 展示了几个简单的语句。当把它们键入 Python 解释...

python调用机器喇叭发出蜂鸣声(Beep)的方法

本文实例讲述了python调用机器喇叭发出蜂鸣声(Beep)的方法。分享给大家供大家参考。具体分析如下: 下面这段python代码可调用机器喇叭发出蜂鸣声(Beep),当然你的喇叭必须能...

使用Django启动命令行及执行脚本的方法

使用django启动命令行和脚本,可以方便的使用django框架做开发,例如,数据库的操作等。 下面分别介绍使用方法。 django shell的启动 启动命令: $/data/py...

python实现两个一维列表合并成一个二维列表

我就废话不多说了,直接上代码吧! >>> list1 = [1,2,3,4,4] >>> list2 = [2,3,4,5,2] >>...

Python手绘可视化工具cutecharts使用实例

Python手绘可视化工具cutecharts使用实例

这篇文章主要介绍了Python手绘可视化工具cutecharts使用实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 今天,给大家介...