解析python实现Lasso回归

yipeiwu_com6年前Python基础

Lasso原理

在这里插入图片描述

Lasso与弹性拟合比较python实现

import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import r2_score
#def main():
# 产生一些稀疏数据
np.random.seed(42)
n_samples, n_features = 50, 200
X = np.random.randn(n_samples, n_features) # randn(...)产生的是正态分布的数据
coef = 3 * np.random.randn(n_features)   # 每个特征对应一个系数
inds = np.arange(n_features)
np.random.shuffle(inds)
coef[inds[10:]] = 0 # 稀疏化系数--随机的把系数向量1x200的其中10个值变为0
y = np.dot(X, coef) # 线性运算 -- y = X.*w
# 添加噪声:零均值,标准差为 0.01 的高斯噪声
y += 0.01 * np.random.normal(size=n_samples)
# 把数据划分成训练集和测试集
n_samples = X.shape[0]
X_train, y_train = X[:n_samples // 2], y[:n_samples // 2]
X_test, y_test = X[n_samples // 2:], y[n_samples // 2:]
# 训练 Lasso 模型
from sklearn.linear_model import Lasso
alpha = 0.1
lasso = Lasso(alpha=alpha)
y_pred_lasso = lasso.fit(X_train, y_train).predict(X_test)
r2_score_lasso = r2_score(y_test, y_pred_lasso)
print(lasso)
print("r^2 on test data : %f" % r2_score_lasso)
# 训练 ElasticNet 模型
from sklearn.linear_model import ElasticNet
enet = ElasticNet(alpha=alpha, l1_ratio=0.7)
y_pred_enet = enet.fit(X_train, y_train).predict(X_test)
r2_score_enet = r2_score(y_test, y_pred_enet)
print(enet)
print("r^2 on test data : %f" % r2_score_enet)
plt.plot(enet.coef_, color='lightgreen', linewidth=2,
     label='Elastic net coefficients')
plt.plot(lasso.coef_, color='gold', linewidth=2,
     label='Lasso coefficients')
plt.plot(coef, '--', color='navy', label='original coefficients')
plt.legend(loc='best')
plt.title("Lasso R^2: %f, Elastic Net R^2: %f"
     % (r2_score_lasso, r2_score_enet))
plt.show()

运行结果

在这里插入图片描述

总结

以上所述是小编给大家介绍的python实现Lasso回归,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对【听图阁-专注于Python设计】网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

相关文章

python使用response.read()接收json数据的实例

如下所示: import json result = response.read() result.decode('utf-8') jsonData = json.loads(r...

Django Web开发中django-debug-toolbar的配置以及使用

Django Web开发中django-debug-toolbar的配置以及使用

前言 django,web开发中,用django-debug-toolbar来调试请求的接口,无疑是完美至极。 可能本人,见识博浅,才说完美至极, 大神,表喷,抱拳了。 django_d...

简析Python的闭包和装饰器

简析Python的闭包和装饰器

什么是装饰器? 装饰器(Decorator)相对简单,咱们先介绍它:“装饰器的功能是将被装饰的函数当作参数传递给与装饰器对应的函数(名称相同的函数),并返回包装后的被装饰的函数”,听起来...

对django的User模型和四种扩展/重写方法小结

User模型 User模型是这个框架的核心部分。他的完整的路径是在django.contrib.auth.models.User。以下对这个User对象做一个简单了解: 字段: 内置的U...

Python列表list操作符实例分析【标准类型操作符、切片、连接字符、列表解析、重复操作等】

Python列表list操作符实例分析【标准类型操作符、切片、连接字符、列表解析、重复操作等】

本文实例讲述了Python列表list操作符。分享给大家供大家参考,具体如下: #coding=utf8 ''''' 列表也可以使用比较操作符,比较时更加ASCII进行比较的。 比较...