Python数据处理篇之Sympy系列(五)---解方程

yipeiwu_com6年前Python基础

前言

sympy不仅在符号运算方面强大,在解方程方面也是很强大。

本章节学习对应官网的:Solvers

官方教程

https://docs.sympy.org/latest/tutorial/solvers.html

(一)求解多元一次方程-solve()

1.说明:

解多元一次方程可以使用solve(),在sympy里,等式是用Eq()来表示,

例如:2x=42x=4 表示为:Eq(x*2, 4)

2.源代码:

"""
 解下列二元一次方程
 2x-y=3
 3x+y=7
"""
# 导入模块
from sympy import *
# 将变量符号化
x = Symbol('x')
y = Symbol('y')
z = Symbol('z')
# 解一元一次方程
expr1 = x*2-4
r1 = solve(expr1, x)
r1_eq = solve(Eq(x*2, 4), x)
print("r1:", r1)
print("r1_eq:", r1_eq)
# 解二元一次方程
expr2 = [2*x-y-3, 3*x+y-7]
r2 = solve(expr2, [x, y])
print("r1:", r2)
# 解三元一次方程
f1 = x+y+z-2
f2 = 2*x-y+z+1
f3 = x+2*y+2*z-3
r3 = solve([f1, f2, f3], [x, y, z])
print("r3:", r3)

3.输出:

(二)解线性方程组-linsolve()

1.说明:

在sympy中,解线性方程组有三种形式:

默认等式为0的形式:linsolve(eq, [x, y, z])

矩阵形式:linsolve(eq, [x, y, z])

增广矩阵形式:linsolve(A,b, x, y, z)

2.源代码:

"""
  x+y+z-2=0
  2x-y+z+1=0
  x+2y+2z-3=0
"""
from sympy import *
x, y, z = symbols("x y z")
# 默认等式为0的形式
print("======默认等式为0的形式 =======")
eq = [x+y+z-2, 2*x-y+z+1, x+2*y+2*z-3]
result = linsolve(eq, [x, y, z])
print(result)
print(latex(result))
# 矩阵形式
print("======矩阵形式 =======")
eq = Matrix(([1, 1, 1, 2], [2, -1, 1, -1], [1, 2, 2, 3]))
result = linsolve(eq, [x, y, z])
print(result)
print(latex(result))
# 增广矩阵形式
print("======增广矩阵形式 =======")
A = Matrix([[1, 1, 1], [2, -1, 1], [1, 2, 2]])
b = Matrix([[2], [-1], [3]])
system = A, b
result = linsolve(system, x, y, z)
print(result)
print(latex(result))

3.输出:

(三)解非线性方程组-nonlinsolve()

1.说明:

nonlinsolve()用于求解非线性方程组,例如二次方,三角函数,,,等方程

2.源代码:

"""
  x**2+y**2-2=0
  x**3+y**3=0
"""
import sympy as sy
x, y = sy.symbols("x y")
eq = [x**2+y**3-2, x**3+y**3]
result = sy.nonlinsolve(eq, [x, y])
print(result)
print(sy.latex(result))

3.输出:

(四)求解微分方程-dsolve()

1.说明:

求解微分方程使用dsolve(),注意:

f = symbols('f', cls=Function)的作用是声明f()是一个函数。

2.源代码:

from sympy import *
# 初始化
x = symbols('x')
f = symbols('f', cls=Function)
# 表达式
expr1 = Eq(f(x).diff(x, x) - 2*f(x).diff(x) + f(x), sin(x))
# 求解微分方程
r1 = dsolve(expr1, f(x))
print(r1)
print("原式:", latex(expr1))
print("求解后:", latex(r1))

3.输出:

原式:

f(x)−2ddxf(x)+d2dx2f(x)=sin(x)
f(x)−2ddxf(x)+d2dx2f(x)=sin⁡(x)

解微分后:

f(x)=(C1+C2x)ex+cos(x)2
f(x)=(C1+C2x)ex+cos⁡(x)2

总结

以上所述是小编给大家介绍的Python数据处理篇之Sympy系列(五)---解方程,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对【听图阁-专注于Python设计】网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

相关文章

python3正则提取字符串里的中文实例

python3正则提取字符串里的中文实例

如下所示: # -*- coding: utf-8 -*- import re #过滤掉除了中文以外的字符 str = "hello,world!!%[545]你好234世界。。。"...

numpy.ndarray 实现对特定行或列取值

numpy.ndarray 实现对特定行或列取值

如下所示: import numpy as np b = [[1,2,0], [4,5,0], [7,8,1], [4,0,1], [7,11,1] ] a=np.array...

基于python中__add__函数的用法

运算符重载 _add ##定义:让自定义的类生成的对象(实例)能够使用运算符进行操作 class Vector01: ‘'‘定义一个一维向量''' def init(self,x...

django drf框架中的user验证以及JWT拓展的介绍

登录注册是几乎所有网站都需要去做的接口,而说到登录,自然也就涉及到验证以及用户登录状态保存,最近用DRF在做的一个关于网上商城的项目中,引入了一个拓展DRF JWT,专门用于做验证和用户...

opencv3/Python 稠密光流calcOpticalFlowFarneback详解

opencv3/Python 稠密光流calcOpticalFlowFarneback详解

光流是由物体或相机的运动引起的图像对象在两个连续帧之间的视在运动模式.光流方法计算在t和 t+Δtt+Δt时刻拍摄的两个图像帧之间的每个像素的运动位置。这些方法被称为差分,因为它们基于图...