python运用sklearn实现KNN分类算法

yipeiwu_com6年前Python基础

KNN(K-Nearest-Neighbours Classiflication)分类算法,供大家参考,具体内容如下

最简单的分类算法,易于理解和实现

实现步骤:通过选取与该点距离最近的k个样本,在这k个样本中哪一个类别的数量多,就把k归为哪一类。

注意

  • 该算法需要保存训练集的观察值,以此判定待分类数据属于哪一类
  • k需要进行自定义,一般选取k<30
  • 距离一般用欧氏距离,即​ 

通过sklearn对数据使用KNN算法进行分类

代码如下:

## 导入鸢尾花数据集
iris = datasets.load_iris()
data = iris.data[:, :2]
target = iris.target

## 区分训练集和测试集,75%的训练集和25%的测试集
train_data, test_data = train_test_split(np.c_[data, target])
## 训练并预测,其中选取k=15
clf = neighbors.KNeighborsClassifier(15, 'distance')
clf.fit(train_data[:, :2], train_data[:, 2])
Z = clf.predict(test_data[:, :2])
print '准确率:' ,clf.score(test_data[:, :2], test_data[:, 2])

colormap = dict(zip(np.unique(target), sns.color_palette()[:3]))
plt.scatter(train_data[:, 0], train_data[:, 1], edgecolors=[colormap[x] for x in train_data[:, 2]],c='', s=80, label='all_data')
plt.scatter(test_data[:, 0], test_data[:, 1], marker='^', color=[colormap[x] for x in Z], s=20, label='test_data')
plt.legend()
plt.show()

结果如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

使用go和python递归删除.ds store文件的方法

python版本:复制代码 代码如下:#!/usr/bin/env pythonimport os, sys;def walk(path):  print "cd directory:"...

Python使用zip合并相邻列表项的方法示例

本文实例讲述了Python使用zip合并相邻列表项的方法。分享给大家供大家参考,具体如下: 1》使用zip()函数和iter()函数,来合并相邻的列表项 >>> x...

python实现大量图片重命名

本文实例为大家分享了python实现大量图片重命名的具体代码,供大家参考,具体内容如下 说明 在进行深度学习的过程中,需要对图片进行批量的命名处理,因此利用简单的python代码实现图片...

使用python绘制温度变化雷达图

使用python绘制温度变化雷达图

本文实例为大家分享了python绘制温度变化雷达图的具体代码,供大家参考,具体内容如下 假设某天某地每三个小时取样的气温为 针对温度变化趋势绘制雷达图: 代码如下: import...

解决py2exe打包后,总是多显示一个DOS黑色窗口的问题

setup.py: #!/usr/bin/env python # coding=utf-8 from distutils.core import setup import py2e...