pandas中遍历dataframe的每一个元素的实现

yipeiwu_com6年前Python基础

假如有一个需求场景需要遍历一个csv或excel中的每一个元素,判断这个元素是否含有某个关键字

那么可以用python的pandas库来实现。

方法一:

pandas的dataframe有一个很好用的函数applymap,它可以把某个函数应用到dataframe的每一个元素上,而且比常规的for循环去遍历每个元素要快很多。如下是相关代码:

import pandas as pd
data = [["str","ewt","earw"],["agter","awetg","aeorgh"]]
dataframe1 = pd.DataFrame(data=data,columns=["name1","name2","name3"])
print(dataframe1)
bool_array = dataframe1.applymap(lambda x:"w" in x)
out_array = dataframe1[bool_array]
print(out_array)
 
>>
  name1 name2  name3
0  str  ewt  earw
1 agter awetg aeorgh
 
 name1 name2 name3
0  NaN  ewt earw
1  NaN awetg  NaN

代码中,bool_array为一个逻辑矩阵,满足条件元素的位置为true,否则为false。然后通过逻辑矩阵去索引dataframe1,就可以得出满足条件的元素。

方法二:

第一种方法是一次性遍历每个元素,这样不好分column去处理,那换一种方式可以每次遍历一列

#接上面代码
file_columns = dataframe1.columns.tolist()
for column in file_columns:
  bool_index = dataframe1[column].str.contains("w")
  filter_data = dataframe1[column][bool_index]
  print(filter_data)
 
>>
Series([], Name: name1, dtype: object)
0   ewt
1  awetg
Name: name2, dtype: object
0  earw
Name: name3, dtype: object

代码种 Series.str.contains 是 Series 才有的一个操作。另外,filter_data只输出每一列中满足条件的元素,更方便下一步的操作。

简单说明:

针对pandas的dataframe和series,有强大的高阶函数:apply,applymap和map函数等,它们比简单的for循环要快很多,善用这些高阶函数会让你事半功倍。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

在CentOS6上安装Python2.7的解决方法

在CentOS6上yum安装工具是基于Python2.6.6的,所以在CentOS6上默认安装的是Python2.6.6,因为要在服务器系统为CentOS6上部署生产环境,但是代码都是基...

python2.7 mayavi 安装图文教程(推荐)

python2.7 mayavi 安装图文教程(推荐)

工具:python2.7 相关包:traits-4.6.0-cp27-cp27m-win32.whl, VTK-7.1.1-cp27-cp27m-win32.whl, mayavi-4....

Python中random模块生成随机数详解

Python中的random模块用于生成随机数。下面介绍一下random模块中最常用的几个函数。 random.random random.random()用于生成一个0到1的随机符点...

python实现画一颗树和一片森林

python实现画一颗树和一片森林

本文实例为大家分享了python画一颗树和一片森林的具体代码,供大家参考,具体内容如下 实现效果 代码在这里 from turtle import Turtle def tree...

python使用celery实现异步任务执行的例子

使用celery在django项目中实现异步发送短信 在项目的目录下创建celery_tasks用于保存celery异步任务。 在celery_tasks目录下创建config.py文件...