pandas中遍历dataframe的每一个元素的实现

yipeiwu_com6年前Python基础

假如有一个需求场景需要遍历一个csv或excel中的每一个元素,判断这个元素是否含有某个关键字

那么可以用python的pandas库来实现。

方法一:

pandas的dataframe有一个很好用的函数applymap,它可以把某个函数应用到dataframe的每一个元素上,而且比常规的for循环去遍历每个元素要快很多。如下是相关代码:

import pandas as pd
data = [["str","ewt","earw"],["agter","awetg","aeorgh"]]
dataframe1 = pd.DataFrame(data=data,columns=["name1","name2","name3"])
print(dataframe1)
bool_array = dataframe1.applymap(lambda x:"w" in x)
out_array = dataframe1[bool_array]
print(out_array)
 
>>
  name1 name2  name3
0  str  ewt  earw
1 agter awetg aeorgh
 
 name1 name2 name3
0  NaN  ewt earw
1  NaN awetg  NaN

代码中,bool_array为一个逻辑矩阵,满足条件元素的位置为true,否则为false。然后通过逻辑矩阵去索引dataframe1,就可以得出满足条件的元素。

方法二:

第一种方法是一次性遍历每个元素,这样不好分column去处理,那换一种方式可以每次遍历一列

#接上面代码
file_columns = dataframe1.columns.tolist()
for column in file_columns:
  bool_index = dataframe1[column].str.contains("w")
  filter_data = dataframe1[column][bool_index]
  print(filter_data)
 
>>
Series([], Name: name1, dtype: object)
0   ewt
1  awetg
Name: name2, dtype: object
0  earw
Name: name3, dtype: object

代码种 Series.str.contains 是 Series 才有的一个操作。另外,filter_data只输出每一列中满足条件的元素,更方便下一步的操作。

简单说明:

针对pandas的dataframe和series,有强大的高阶函数:apply,applymap和map函数等,它们比简单的for循环要快很多,善用这些高阶函数会让你事半功倍。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

在Docker上开始部署Python应用的教程

在Docker上开始部署Python应用的教程

几周前, Elastic Beanstalk声明在AWS云中配置和管理Docker容器。在本文中,我们通过一个简单的注册表单页面应用去理解Docker部署过程,该表单使用Elastic...

Python线程中对join方法的运用的教程

join 方法:阻塞线程 , 直到该线程执行完毕 因此  ,可以对join加一个超时操作 , join([timeout]),超过设置时间,就不再阻塞线程 jion加上还有一个...

Python Flask基础教程示例代码

Python Flask基础教程示例代码

本文研究的主要是Python Flask基础教程,具体介绍如下。 安装:pip install flask即可 一个简单的Flask from flask import Flask...

python 获取当天凌晨零点的时间戳方法

最近写python,遇到了一个问题,需要获取当日凌晨零点的时间戳,网上实在没有找到,自己手写了一个,有点挫 # -*- coding:utf-8 -*- import time...

Python3中的列表,元组,字典,字符串相关知识小结

一、知识概要   1. 列表,元组,字典,字符串的创建方式   2. 列表,元组,字典,字符串的方法调用   3. 列表,元组,字典,字符串的常规用法 二、列表 # 列 表 # 列...