python实现通过队列完成进程间的多任务功能示例

yipeiwu_com6年前Python基础

本文实例讲述了python实现通过队列完成进程间的多任务功能。分享给大家供大家参考,具体如下:

1.通过队列完成进程间的多任务

import multiprocessing


def download_data(q):
  """下载数据"""
  # 模拟从网上下载数据
  data = [11, 22, 33, 44]

  # 向队列中写入数据
  for temp in data:
    q.put(temp)
  print("----数据下载完成并且已存入队列----")


def analysis_data(q):
  """数据处理"""
  waitting_analysis_data = list()
  # 从队列中获取数据
  while True:
    data = q.get()
    waitting_analysis_data.append(data)
    if q.empty():
      break
  print(waitting_analysis_data)


def main():
  # 1.创建一个队列
  q = multiprocessing.Queue()
  q1 = multiprocessing.Process(target=download_data, args=(q,))
  q2 = multiprocessing.Process(target=analysis_data, args=(q,))
  q1.start()
  q2.start()


if __name__ == '__main__':
  main()

在这里插入图片描述

2.进程池pool

在程序实际处理问题过程中,忙时会有成千上万的任务需要被执行,闲时可能只有零星任务。那么在成千上万个任务需要被执行的时候,我们就需要去创建成千上万个进程么?首先,创建进程需要消耗时间,销毁进程也需要消耗时间。第二即便开启了成千上万的进程,操作系统也不能让他们同时执行,这样反而会影响程序的效率。因此我们不能无限制的根据任务开启或者结束进程。那么我们要怎么做呢?

在这里,要给大家介绍一个进程池的概念,定义一个池子,在里面放上固定数量的进程,有需求来了,就拿一个池中的进程来处理任务,等到处理完毕,进程并不关闭,而是将进程再放回进程池中继续等待任务。如果有很多任务需要执行,池中的进程数量不够,任务就要等待之前的进程执行任务完毕归来,拿到空闲进程才能继续执行。也就是说,池中进程的数量是固定的,那么同一时间最多有固定数量的进程在运行。这样不会增加操作系统的调度难度,还节省了开闭进程的时间,也一定程度上能够实现并发效果。

案例:

from multiprocessing import Pool
import os, time, random


def worker(msg):
  t_start = time.time()
  print("进程%s开始执行,进程号为%d" % (msg, os.getpid()))
  # random.random()随机生成0-1之间的浮点数
  time.sleep(random.random()*2)
  t_stop = time.time()
  print("进程",msg,"执行完成,耗时%0.2f" % (t_stop-t_start))


def main():
  # 定义一个进程池,最大进程数为3
  po = Pool(3)
  for i in range(10):
    # Pool().apply_async(要调用的目标,(传递给目标的参数元组,))
    # 每次循环将会用空闲出来的子进程去调用目标
    po.apply_async(worker,(i,))

  print("----start----")
  # 关闭进程池,关闭后po不再接受新的请求
  po.close()
# 等待po中所有子进程执行完成,必须放在close语句之后
  po.join()

  print("----end----")


if __name__ == '__main__':
  main()

在这里插入图片描述

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python进程与线程操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》、《Python+MySQL数据库程序设计入门教程》及《Python常见数据库操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。

相关文章

对pandas的算术运算和数据对齐实例详解

pandas可以对不同索引的对象进行算术运算,如果存在不同的索引对,结果的索引就是该索引对的并集。 一、算术运算 a、series的加法运算 s1 = Series([1,2,3...

python 魔法函数实例及解析

python的几个魔法函数 __repr__ Python中这个__repr__函数,对应repr(object)这个函数,返回一个可以用来表示对象的可打印字符串.如果我们直接打印...

python networkx 包绘制复杂网络关系图的实现

1. 创建一个图 import networkx as nx g = nx.Graph() g.clear() #将图上元素清空 所有的构建复杂网络图的操作基本都围绕这个g来执行...

python 命令行传入参数实现解析

python 命令行传入参数实现解析

创建 test.py 文件,代码如下: #!/usr/bin/python # -*- coding: gbk -*- import sys print sys.argv if __...

使用Anaconda3建立虚拟独立的python2.7环境方法

由于一些不可预测的因素,必须使用python2.7进行开发,所以研究了一下怎么在Anaconda3下建立2.7的开发环境,发现十分方便,在此分享一下。 首先安装Anaconda3,这就不...