Pandas操作CSV文件的读写实现方法

yipeiwu_com6年前Python基础

(1)、导库

import pandas as pd
from pandas import Series

(2)、读取csv文件的两种方式

#读取csv文件的两种方式
f = open('E:/建模/第5周/data/ex1.csv') #方法一
df = pd.read_csv(f)
print(df)
f.close

f = open('E:/建模/第5周/data/ex1.csv') #方法二,必须指定分隔符为',',否则会读取失败
df = pd.read_table(f,sep=',')
print(df)
f.close

(2)、根据需要条件读取csv文件

#根据需要条件读取csv文件
f = open('E:/建模/第5周/data/csv_mindex.csv') 
df = pd.read_csv(f,header=None)   #不需要表头
df = pd.read_csv(f,names=['a','b','c','d','message'])  #添加表头
df = pd.read_csv(f,names=['a','b','c','d','message'],index_col = 'message')  #指定某一列作为行索引
df = pd.read_csv(f,index_col = ['key1','key2'])  #指定多列作为行索引
print(df)
f.close

(3)、利用正则表达式读取不同含有不同分隔符的文件

#利用正则表达式读取不同含有不同分隔符的文件
f = open('E:/建模/第5周/data/ex3.txt') 
df = pd.read_table(f,sep='\s+')
print(df)

(4)、根据需要选择需要读的行

#根据需要选择需要读的行
f = open('E:/建模/第5周/data/ex4.csv') 
df = pd.read_table(f,sep=',',skiprows=[0,2,3]) #跳过不想读的行
print(df)

(5)、处理缺失值

#处理缺失值
f = open('E:/建模/第5周/data/ex5.csv') 
df = pd.read_table(f,sep=',',na_values='world') #如果数据中有'world',也会视为缺失值
print(df)

(6)、逐行读取文件

#逐行读取文件
f = open('E:/建模/第5周/data/ex6.csv') 
df = pd.read_table(f,sep=',',nrows=5) #只读取前面5行
print(df)

(7)、将dataframe数据写入csv文件

#将dataframe数据写入csv文件
f = open('E:/建模/第5周/data/ex5.csv') 
data = pd.read_csv(f)
data.to_csv('E:/建模/第5周/data/out.csv')  #将dataframe输出到csv文件中
data.to_csv('E:/建模/第5周/data/out.csv',na_rep='ok')  #将缺失值补上‘ok'
data.to_csv('E:/建模/第5周/data/out.csv',header=None)  #不设置表头
data.to_csv('E:/建模/第5周/data/out.csv',columns=['a','b'])  #写出指定的列

(8)、将csv文件读取位Series

#将csv文件读取位Series
f = open('E:/建模/第5周/data/tseries.csv') 
series = Series.from_csv(f,parse_dates=True)
print(series)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pyqt5 获取显示器的分辨率的方法

代码如下 import sys from PyQt5.QtWidgets import QApplication, QWidget class Example(QWidget...

python找出完数的方法

如下所示: # -*- coding: utf-8 -*- # 要求:用python方法找出1000以内的所有完数,并输出。 def f(n): list = [] for i...

python函数缺省值与引用学习笔记分享

复制代码 代码如下:import random, stringclass C(object):    passdef dangerFunction(msg,...

mac安装scrapy并创建项目的实例讲解

最近刚好在学习python+scrapy的爬虫技术,因为mac是自带python2.7的,所以安装3.5版本有两种方法,一种是升级,一种是额外安装3.5版本。 升级就不用说了,讲讲额外安...

python解析文件示例

python最近的工作主要是组件兼容性测试,原有的框架有很多功能还不完善,需要补充!比如,需要将AutoIt脚本的执行结果写入到Excel中,最后的解决方案是使用本地的log来解析这个结...