Python numpy线性代数用法实例解析

yipeiwu_com6年前Python基础

这篇文章主要介绍了Python numpy线性代数用法实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

numpy中线性代数用法

矩阵乘法

>>> import numpy as np
>>> x=np.array([[1,2,3],[4,5,6]])
>>> y=np.array([[7,8],[-1,7],[8,9]])
>>> x
array([[1, 2, 3],
    [4, 5, 6]])
>>> y
array([[ 7, 8],
    [-1, 7],
    [ 8, 9]])
>>> x.dot(y)
array([[ 29, 49],
    [ 71, 121]])
>>> np.dot(x,y)
array([[ 29, 49],
    [ 71, 121]])

计算点积

>>> a=np.array([[1,2],[3,4]])
>>> b=np.array([[11,12],[12,13]])
>>> np.vdot(a,b)
123

计算的公式是

result=1*11+2*12+3*12+4*13

计算内积

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2

计算公式

result=1*0+2*1+3*0

计算行列式

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2
>>> a=np.array([[1,2],[3,4]])
>>> np.linalg.det(a)
-2.0000000000000004

求线性方程的解

x + y + z = 6
2y + 5z = -4
2x + 5y - z = 27

矩阵表示

>>> import numpy as np
>>> a = np.array([[1,1,1],[0,2,5],[2,5,-1]])
>>> ainv = np.linalg.inv(a)#求矩阵的逆
>>> b = np.array([[6],[-4],[27]])
>>> x = np.linalg.solve(a,b)#求解需要A-1和B
>>> x
array([[ 5.],
    [ 3.],
    [-2.]])
>>>

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

libreoffice python 操作word及excel文档的方法

1、开始、关闭libreoffice服务; 开始之前同步字体文件时间,是因为创建soffice服务时,服务会检查所需加载的文件的时间,如果其认为时间不符,则其可能会重新加载,耗时较长,因...

Python3 实现串口两进程同时读写

通过两个进程分别读写串口,并把发送与接收到的内容记录在blog中,收到q时程序结束并退出 import threading,time import serial import str...

Python isinstance函数介绍

isinstance(object, classinfo) 判断实例是否是这个类或者object object是变量   classinfo 是类型(tuple,d...

Python增强赋值和共享引用注意事项小结

概述 Python中的增强赋值是从C语言中借鉴出来的,所以这些格式的用法大多和C一致,本身就是对表达式的简写,即二元表达式和赋值语句的结合,比如a += b 和a = a + b 就是...

pandas series序列转化为星期几的实例

series序列中每个元素都是带有日期形式的字符串,需要将其转化为一个同等大小的series,且其中每个元素都是星期几。 1)将Series转化为datetime格式; 2)将Serie...