Python numpy线性代数用法实例解析

yipeiwu_com6年前Python基础

这篇文章主要介绍了Python numpy线性代数用法实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

numpy中线性代数用法

矩阵乘法

>>> import numpy as np
>>> x=np.array([[1,2,3],[4,5,6]])
>>> y=np.array([[7,8],[-1,7],[8,9]])
>>> x
array([[1, 2, 3],
    [4, 5, 6]])
>>> y
array([[ 7, 8],
    [-1, 7],
    [ 8, 9]])
>>> x.dot(y)
array([[ 29, 49],
    [ 71, 121]])
>>> np.dot(x,y)
array([[ 29, 49],
    [ 71, 121]])

计算点积

>>> a=np.array([[1,2],[3,4]])
>>> b=np.array([[11,12],[12,13]])
>>> np.vdot(a,b)
123

计算的公式是

result=1*11+2*12+3*12+4*13

计算内积

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2

计算公式

result=1*0+2*1+3*0

计算行列式

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2
>>> a=np.array([[1,2],[3,4]])
>>> np.linalg.det(a)
-2.0000000000000004

求线性方程的解

x + y + z = 6
2y + 5z = -4
2x + 5y - z = 27

矩阵表示

>>> import numpy as np
>>> a = np.array([[1,1,1],[0,2,5],[2,5,-1]])
>>> ainv = np.linalg.inv(a)#求矩阵的逆
>>> b = np.array([[6],[-4],[27]])
>>> x = np.linalg.solve(a,b)#求解需要A-1和B
>>> x
array([[ 5.],
    [ 3.],
    [-2.]])
>>>

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

matplotlib实现热成像图colorbar和极坐标图的方法

matplotlib实现热成像图colorbar和极坐标图的方法

热成像图 %matplotlib inline from matplotlib import pyplot as plt import numpy as np def f(x,...

python实现翻转棋游戏(othello)

python实现翻转棋游戏(othello)

利用上一篇的框架,再写了个翻转棋的程序,为了调试minimax算法,花了两天的时间。 几点改进说明: 拆分成四个文件:board.py,player.py,ai.py,othell...

Python中的进程分支fork和exec详解

在python中,任务并发一种方式是通过进程分支来实现的.在linux系统在,通过fork()方法来实现进程分支. 1.fork()调用后会创建一个新的子进程,这个子进程是原父进程的副本...

Python单元测试unittest的具体使用示例

Python单元测试unittest的具体使用示例

Python中有一个自带的单元测试框架是unittest模块,用它来做单元测试,它里面封装好了一些校验返回的结果方法和一些用例执行前的初始化操作。 unittest是python的标准...

Python脚本利用adb进行手机控制的方法

一.  adb 相关命令:   1. 关闭adb服务:adb kill-server   2. 启动adb服务  adb start-server   3. 查询当前...