Pandas数据离散化原理及实例解析

yipeiwu_com6年前Python基础

这篇文章主要介绍了Pandas数据离散化原理及实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

为什么要离散化

  • 连续属性离散化的目的是为了简化数据结构,数据离散化技术可以用来减少给定连续属性值的个数。离散化方法经常作为数据挖掘的工具
  • 扔掉一些信息,可以让模型更健壮,泛化能力更强

什么是数据的离散化

连续属性的离散化就是在连续属性的值域上,将值域划分为若干个离散的区间,最后用不同的符号或整数 值代表落在每个子区间中的属性值

分箱

案例

1.先读取股票的数据,筛选出p_change数据

data = pd.read_csv("./data/stock_day.csv")
p_change= data['p_change']

2.将股票涨跌幅数据进行分组

使用的工具:

  • pd.qcut(data, bins)——等深分箱:
    • 对数据进行分组将数据分组 一般会与value_counts搭配使用,统计每组的个数
  • series.value_counts():统计分组次数
# 自行分组
qcut = pd.qcut(p_change, 10)
# 计算分到每个组数据个数
qcut.value_counts()

自定义区间分组:

  • pd.cut(data, bins)——等宽分箱:
    • bins是整数—等宽
    • bins是列表--自定义分箱
# 自己指定分组区间
bins = [-100, -7, -5, -3, 0, 3, 5, 7, 100]
p_counts = pd.cut(p_change, bins)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python cookbook(数据结构与算法)字典相关计算问题示例

本文实例讲述了Python cookbook(数据结构与算法)字典相关计算问题。分享给大家供大家参考,具体如下: 问题:在字典上对数据执行各式各样的计算(比如求最小值、最大值、排序)。...

用Python去除图像的黑色或白色背景实例

用Python去除图像的黑色或白色背景实例

用Python去除背景,得到有效的图像 此目的是为了放入深度学习计算中来减少计算量,同时突出特征,原图像为下图,命名为1.jpg,在此去除白色背景,黑色背景同理 需要对原图像进行的处理...

详解解决Python memory error的问题(四种解决方案)

昨天在用用Pycharm读取一个200+M的CSV的过程中,竟然出现了Memory Error!简直让我怀疑自己买了个假电脑,毕竟是8G内存i7处理器,一度怀疑自己装了假的内存条。。。。...

Python基于回溯法子集树模板解决m着色问题示例

Python基于回溯法子集树模板解决m着色问题示例

本文实例讲述了Python基于回溯法子集树模板解决m着色问题。分享给大家供大家参考,具体如下: 问题 图的m-着色判定问题 给定无向连通图G和m种不同的颜色。用这些颜色为图G的各顶点着色...

python与caffe改变通道顺序的方法

把通道放在前面: image = cv2.imread(path + file) image = cv2.resize(image, (48, 48), interpolation...