50行Python代码实现视频中物体颜色识别和跟踪(必须以红色为例)

yipeiwu_com5年前Python基础

目前计算机视觉(CV)与自然语言处理(NLP)及语音识别并列为人工智能三大热点方向,而计算机视觉中的对象检测(objectdetection)应用非常广泛,比如自动驾驶、视频监控、工业质检、医疗诊断等场景。

目标检测的根本任务就是将图片或者视频中感兴趣的目标提取出来,目标的识别可以基于颜色、纹理、形状。其中颜色属性运用十分广泛,也比较容易实现。下面就向大家分享一个我做的小实验———通过OpenCV的Python接口来实现从视频中进行颜色识别和跟踪。

下面就是我们完整的代码实现(已调试运行):

import numpy as np
import cv2
font = cv2.FONT_HERSHEY_SIMPLEX
lower_green = np.array([35, 110, 106]) # 绿色范围低阈值
upper_green = np.array([77, 255, 255]) # 绿色范围高阈值
lower_red = np.array([0, 127, 128]) # 红色范围低阈值
upper_red = np.array([10, 255, 255]) # 红色范围高阈值
#需要更多颜色,可以去百度一下HSV阈值!
# cap = cv2.VideoCapture('1.mp4') # 打开视频文件
cap = cv2.VideoCapture(0)#打开USB摄像头
if (cap.isOpened()): # 视频打开成功
 flag = 1
else:
 flag = 0
num = 0
if (flag):
 while (True):
 ret, frame = cap.read() # 读取一帧
 
 if ret == False: # 读取帧失败
  break
 hsv_img = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
 mask_green = cv2.inRange(hsv_img, lower_green, upper_green) # 根据颜色范围删选
 mask_red = cv2.inRange(hsv_img, lower_red, upper_red) 
 # 根据颜色范围删选
 mask_green = cv2.medianBlur(mask_green, 7) # 中值滤波
 mask_red = cv2.medianBlur(mask_red, 7) # 中值滤波
 mask = cv2.bitwise_or(mask_green, mask_red)
 mask_green, contours, hierarchy = cv2.findContours(mask_green, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
 mask_red, contours2, hierarchy2 = cv2.findContours(mask_red, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

 for cnt in contours:
  (x, y, w, h) = cv2.boundingRect(cnt)
  cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 255), 2)
  cv2.putText(frame, "Green", (x, y - 5), font, 0.7, (0, 255, 0), 2)

 for cnt2 in contours2:
  (x2, y2, w2, h2) = cv2.boundingRect(cnt2)
  cv2.rectangle(frame, (x2, y2), (x2 + w2, y2 + h2), (0, 255, 255), 2)
  cv2.putText(frame, "Red", (x2, y2 - 5), font, 0.7, (0, 0, 255), 2)
 num = num + 1
 cv2.imshow("dection", frame)
 cv2.imwrite("imgs/%d.jpg"%num, frame)
 if cv2.waitKey(20) & 0xFF == 27:
  break
cv2.waitKey(0)
cv2.destroyAllWindows()

如图所示,我们将会检测到红色区域

最终的效果图:

总结

以上所述是小编给大家介绍的50行Python代码实现视频中物体颜色识别和跟踪,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对【听图阁-专注于Python设计】网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

相关文章

Python下的Softmax回归函数的实现方法(推荐)

Python下的Softmax回归函数的实现方法(推荐)

Softmax回归函数是用于将分类结果归一化。但它不同于一般的按照比例归一化的方法,它通过对数变换来进行归一化,这样实现了较大的值在归一化过程中收益更多的情况。 Softmax公式 S...

新年快乐! python实现绚烂的烟花绽放效果

新年快乐! python实现绚烂的烟花绽放效果

做了一个Python的小项目。利用了一点python的可视化技巧,做出烟花绽放的效果,文章的灵感来自网络上一位大神。 一.编译环境 Pycharm 二.模块 1.tkinter:这个...

Python cookbook(字符串与文本)针对任意多的分隔符拆分字符串操作示例

本文实例讲述了Python针对任意多的分隔符拆分字符串操作。分享给大家供大家参考,具体如下: 问题:将分隔符(以及分隔符之间的空格)不一致的字符串拆分为不同的字段; 解决方案:使用更为灵...

Pyqt5 基本界面组件之inputDialog的使用

Pyqt5 基本界面组件之inputDialog的使用

QInputDialog类提供了一种简单方面的对话框来获得用户的单个输入信息,可以是一个字符串,一个Int类型数据,一个double类型数据或是一个下拉列表框的条目。 对应的Dialog...

python 读写中文json的实例详解

 python 读写中文json的实例详解 读写中文json 想要 读写中文json ,可以使用python中的 json 库可以对json进行操作。读入数据可以使用 jso...