python 计算积分图和haar特征的实例代码

yipeiwu_com6年前Python基础

下面的代码通过积分图计算一张图片的一种haar特征的所有可能的值。初步学习图像处理并尝试写代码,如有错误,欢迎指出。

import cv2
import numpy as np
import matplotlib.pyplot as plt
#
#计算积分图
#
def integral(img):
  integ_graph = np.zeros((img.shape[0],img.shape[1]),dtype = np.int32)
  for x in range(img.shape[0]):
    sum_clo = 0
    for y in range(img.shape[1]):
      sum_clo = sum_clo + img[x][y]
      integ_graph[x][y] = integ_graph[x-1][y] + sum_clo;
  return integ_graph

# Types of Haar-like rectangle features
#  --- ---
# |  |  |
# | - | + |
# |  |  |
# --- ---
#
#就算所有需要计算haar特征的区域
#
def getHaarFeaturesArea(width,height):
  widthLimit = width-1
  heightLimit = height/2-1
  features = []
  for w in range(1,int(widthLimit)):
    for h in range(1,int(heightLimit)):
      wMoveLimit = width - w
      hMoveLimit = height - 2*h
      for x in range(0, wMoveLimit):
        for y in range(0, hMoveLimit):
          features.append([x, y, w, h])
  return features
#
#通过积分图特征区域计算haar特征
#
def calHaarFeatures(integral_graph,features_graph):
  haarFeatures = []
  for num in range(len(features_graph)):
    #计算左面的矩形区局的像素和
    haar1 = integral_graph[features_graph[num][0]][features_graph[num][1]]-\
    integral_graph[features_graph[num][0]+features_graph[num][2]][features_graph[num][1]] -\
    integral_graph[features_graph[num][0]][features_graph[num][1]+features_graph[num][3]] +\
    integral_graph[features_graph[num][0]+features_graph[num][2]][features_graph[num][1]+features_graph[num][3]]
    #计算右面的矩形区域的像素和
    haar2 = integral_graph[features_graph[num][0]][features_graph[num][1]+features_graph[num][3]]-\
    integral_graph[features_graph[num][0]+features_graph[num][2]][features_graph[num][1]+features_graph[num][3]] -\
    integral_graph[features_graph[num][0]][features_graph[num][1]+2*features_graph[num][3]] +\
    integral_graph[features_graph[num][0]+features_graph[num][2]][features_graph[num][1]+2*features_graph[num][3]]
    #右面的像素和减去左面的像素和
    haarFeatures.append(haar2-haar1)
  return haarFeatures


img = cv2.imread("faces/face00001.bmp",0)
integeralGraph = integral(img)
featureAreas = getHaarFeaturesArea(img.shape[0],img.shape[1])
haarFeatures = calHaarFeatures(integeralGraph,featureAreas)
print(haarFeatures)

以上这篇python 计算积分图和haar特征的实例代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python连接数据库学习之DB-API详解

Python连接数据库学习之DB-API详解

前言 大家都知道在Python中如果要连接数据库,不管是MySQL、SQL Server、PostgreSQL亦或是SQLite,使用时都是采用游标的方式,所以就不得不学习Python...

解决PyCharm同目录下导入模块会报错的问题

在PyCharm2017中同目录下import其他模块,会出现No model named ...的报错,但实际可以运行 这是因为PyCharm不会将当前文件目录自动加入source_p...

python根据出生日期获得年龄的方法

本文实例讲述了python根据出生日期获得年龄的方法。分享给大家供大家参考。具体如下: 这段代码可以根据用户的出生日期获得其年龄,born参数为date类型 def calculat...

python模拟enum枚举类型的方法小结

本文实例总结了python模拟enum枚举类型的方法。分享给大家供大家参考。具体分析如下: python中没有enum枚举类型,可能python认为这玩意压根就没用,下面列举了三种方法模...

Django中celery执行任务结果的保存方法

如下所示: pip3 install django-celery-results INSTALLED_APPS = ( ..., 'django_celery_results',) #...