基于python cut和qcut的用法及区别详解

yipeiwu_com6年前Python基础

我就废话不多说了,直接上代码吧:

from pandas import Series,DataFrame
import pandas as pd
import numpy as np
from numpy import nan as NA
from matplotlib import pyplot as plt
ages = [20,22,25,27,21,23,37,31,61,45,41,32]
#将所有的ages进行分组
bins = [18,25,35,60,100]
#使用pandas中的cut对年龄数据进行分组
cats = pd.cut(ages,bins)
#print(cats)
#调用pd.value_counts方法统计每个区间的个数
number=pd.value_counts(cats)
#print(pd.value_counts(cats))
#显示第几个区间index值
index=pd.cut(ages,bins).codes
#print(index)
#为分类出来的每一组年龄加上标签
group_names = ["Youth","YouthAdult","MiddleAged","Senior"]
personType=pd.cut(ages,bins,labels=group_names)
#print(personType)
plt.hist(personType)
#plt.show()
#cut和qcut的用法
data=[1,2,3,4,5,6,7,8,9,10]
result=pd.qcut(data,4)
print(' ',result)##qcut会将10个数据进行排序,然后再将data数据均分成四组
#统计落在每个区间的元素个数
print('dasdasdasdasdas:  ',pd.value_counts(result))
#qcut : 跟cut一样也可以自定义分位数(0到1之间的数值,包括端点)
results=pd.qcut(data,[0,0.1,0.5,0.9,1])
print('results:  ',results)
import numpy as np
import pandas as pd
data = np.random.rand(20)
print(data)
#用cut函数将一组数据分割成n份
#cut函数分割的方式:数据里的(最大值-最小值)/n=每个区间的间距
#利用数据中最大值和最小值的差除以分组数作为每一组数据的区间范围的差值
result = pd.cut(data,4,precision=2) #precision保留小数点的有效位数
print(result)
res_data=pd.value_counts(result)
print(res_data)

以上这篇基于python cut和qcut的用法及区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python3个性签名设计实现代码

python3个性签名设计实现代码

本文实例为大家分享了python个性签名设计的具体代码,供大家参考,具体内容如下 参考博客:Python GUI Tkinter简单实现个性签名设计 参考博客:python3爬虫之设计签...

Python3中的真除和Floor除法用法分析

本文实例讲述了Python3中的真除和Floor除法用法。分享给大家供大家参考,具体如下: 在Python3中,除法运算有两种,一种是真除,一种是Floor除法,这两者是有分别的,分别如...

Python中几种属性访问的区别与用法详解

起步 在Python中,对于一个对象的属性访问,我们一般采用的是点(.)属性运算符进行操作。例如,有一个类实例对象foo,它有一个name属性,那便可以使用foo.name对此属性进行...

Python numpy 常用函数总结

Numpy是什么 在没给大家介绍numpy之前先给大家说下python的基本概念。 Python 是一种高级的,动态的,多泛型的编程语言。Python代码很多时候看起来就像是伪代码一样...

Python字符串、元组、列表、字典互相转换的方法

废话不多说了,直接给大家贴代码了,代码写的不好还去各位大侠见谅。 #-*-coding:utf-8-*- #1、字典 dict = {'name': 'Zara', 'age':...