python实现拉普拉斯特征图降维示例

yipeiwu_com6年前Python基础

这种方法假设样本点在光滑的流形上,这一方法的计算数据的低维表达,局部近邻信息被最优的保存。以这种方式,可以得到一个能反映流形的几何结构的解。

步骤一:构建一个图G=(V,E),其中V={vi,i=1,2,3…n}是顶点的集合,E={eij}是连接顶点的vi和vj边,图的每一个节点vi与样本集X中的一个点xi相关。如果xi,xj相距较近,我们就连接vi,vj。也就是说在各自节点插入一个边eij,如果Xj在xi的k领域中,k是定义参数。

步骤二:每个边都与一个权值Wij相对应,没有连接点之间的权值为0,连接点之间的权值:

步骤三: ,实现广义本征分解:

使 是最小的m+1个本征值。忽略与 =0相关的本征向量,选取另外m个本征向量即为降维后的向量。

1、python实现拉普拉斯降维

def laplaEigen(dataMat,k,t): 
 m,n=shape(dataMat) 
 W=mat(zeros([m,m])) 
 D=mat(zeros([m,m])) 
 for i in range(m): 
 k_index=knn(dataMat[i,:],dataMat,k) 
 for j in range(k): 
  sqDiffVector = dataMat[i,:]-dataMat[k_index[j],:] 
  sqDiffVector=array(sqDiffVector)**2 
  sqDistances = sqDiffVector.sum() 
  W[i,k_index[j]]=math.exp(-sqDistances/t) 
  D[i,i]+=W[i,k_index[j]] 
 L=D-W 
 Dinv=np.linalg.inv(D) 
 X=np.dot(D.I,L) 
 lamda,f=np.linalg.eig(X) 
return lamda,f 
def knn(inX, dataSet, k): 
 dataSetSize = dataSet.shape[0] 
 diffMat = tile(inX, (dataSetSize,1)) - dataSet 
 sqDiffMat = array(diffMat)**2 
 sqDistances = sqDiffMat.sum(axis=1) 
 distances = sqDistances**0.5 
 sortedDistIndicies = distances.argsort() 
return sortedDistIndicies[0:k] 
dataMat, color = make_swiss_roll(n_samples=2000) 
lamda,f=laplaEigen(dataMat,11,5.0) 
fm,fn =shape(f) 
print 'fm,fn:',fm,fn 
lamdaIndicies = argsort(lamda) 
first=0 
second=0 
print lamdaIndicies[0], lamdaIndicies[1] 
for i in range(fm): 
 if lamda[lamdaIndicies[i]].real>1e-5: 
 print lamda[lamdaIndicies[i]] 
 first=lamdaIndicies[i] 
 second=lamdaIndicies[i+1] 
 break 
print first, second 
redEigVects = f[:,lamdaIndicies] 
fig=plt.figure('origin') 
ax1 = fig.add_subplot(111, projection='3d') 
ax1.scatter(dataMat[:, 0], dataMat[:, 1], dataMat[:, 2], c=color,cmap=plt.cm.Spectral) 
fig=plt.figure('lowdata') 
ax2 = fig.add_subplot(111) 
ax2.scatter(f[:,first], f[:,second], c=color, cmap=plt.cm.Spectral) 
plt.show() 

2、拉普拉斯降维实验

用如下参数生成实验数据存在swissdata.dat里面:

def make_swiss_roll(n_samples=100, noise=0.0, random_state=None): 
 #Generate a swiss roll dataset. 
 t = 1.5 * np.pi * (1 + 2 * random.rand(1, n_samples)) 
 x = t * np.cos(t) 
 y = 83 * random.rand(1, n_samples) 
 z = t * np.sin(t) 
 X = np.concatenate((x, y, z)) 
 X += noise * random.randn(3, n_samples) 
 X = X.T 
 t = np.squeeze(t) 
return X, t 

实验结果如下:

以上这篇python实现拉普拉斯特征图降维示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python自动化UI工具发送QQ消息的实例

python自动化UI工具发送QQ消息的实例

概述 个人遇到过小的需求,windows自动水群发送垃圾消息,使用一些特别简单易上手的小工具,快速实现功能需求(而不是使用一些重量级的还需要额外花时间去熟悉功能语法的大工具,如UI自动化...

pandas多级分组实现排序的方法

pandas有groupby分组函数和sort_values排序函数,但是如何对dataframe分组之后排序呢? In [70]: df = pd.DataFrame(((rand...

Python使用scrapy采集时伪装成HTTP/1.1的方法

本文实例讲述了Python使用scrapy采集时伪装成HTTP/1.1的方法。分享给大家供大家参考。具体如下: 添加下面的代码到 settings.py 文件 复制代码 代码如下:DOW...

python 获取url中的参数列表实例

Python的urlparse有对url的解析,从而获得url中的参数列表 import urlparse urldata = "http://en.wikipedia.org/w/...

Python从函数参数类型引出元组实例分析

本文实例讲述了Python从函数参数类型引出元组。分享给大家供大家参考,具体如下: 自定义函数:特殊参数 def show(name="jack", *info): print(...