python实现差分隐私Laplace机制详解

yipeiwu_com6年前Python基础

Laplace分布定义:

下面先给出Laplace分布实现代码:

import matplotlib.pyplot as plt
import numpy as np
 
def laplace_function(x,beta):
 result = (1/(2*beta)) * np.e**(-1*(np.abs(x)/beta))
 return result
#在-5到5之间等间隔的取10000个数
x = np.linspace(-5,5,10000)
y1 = [laplace_function(x_,0.5) for x_ in x]
y2 = [laplace_function(x_,1) for x_ in x]
y3 = [laplace_function(x_,2) for x_ in x]
 
 
plt.plot(x,y1,color='r',label='beta:0.5')
plt.plot(x,y2,color='g',label='beta:1')
plt.plot(x,y3,color='b',label='beta:2')
plt.title("Laplace distribution")
plt.legend()
plt.show()

效果图如下:

接下来给出Laplace机制实现:

Laplace机制,即在操作函数结果中加入服从Laplace分布的噪声。

Laplace概率密度函数Lap(x|b)=1/2b exp(-|x|/b)正比于exp(-|x|/b)。

import numpy as np
 
def noisyCount(sensitivety,epsilon):
 beta = sensitivety/epsilon
 u1 = np.random.random()
 u2 = np.random.random()
 if u1 <= 0.5:
  n_value = -beta*np.log(1.-u2)
 else:
  n_value = beta*np.log(u2)
 print(n_value)
 return n_value
 
def laplace_mech(data,sensitivety,epsilon):
 for i in range(len(data)):
  data[i] += noisyCount(sensitivety,epsilon)
 return data
 
if __name__ =='__main__':
 x = [1.,1.,0.]
 sensitivety = 1
 epsilon = 1
 data = laplace_mech(x,sensitivety,epsilon)
 for j in data:
  print(j)

以上这篇python实现差分隐私Laplace机制详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python mqtt 客户端的实现代码实例

这篇文章主要介绍了python mqtt 客户端代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 安装paho-mqtt...

跟老齐学Python之让人欢喜让人忧的迭代

哦,这就是真正牛X的程序员。不过,他也仅仅是牛X罢了,还不是大神。大神程序员是什么样儿呢?他是扫地僧,大隐隐于市。 先搞清楚这些名词再说别的: 循环(loop),指的是在满足条件的情况下...

使用python中的in ,not in来检查元素是不是在列表中的方法

使用python中的in ,not in来检查元素是不是在列表中的方法

如果在列表中返回True ,否则返回False 以上这篇使用python中的in ,not in来检查元素是不是在列表中的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希...

Python面向对象特殊成员

类的特殊成员之call #!/usr/bin/env python # _*_coding:utf-8 _*_ class SpecialMembers: # 类的构造方法...

python多线程高级锁condition简单用法示例

本文实例讲述了python多线程高级锁condition简单用法。分享给大家供大家参考,具体如下: 多线程编程中如果使用Condition对象代替lock, 能够实现在某个事件触发后才处...