python利用dlib获取人脸的68个landmark

yipeiwu_com6年前Python基础

(1) 单人脸情况

import cv2
import dlib

path = "1.jpg"
img = cv2.imread(path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#人脸检测画框
detector = dlib.get_frontal_face_detector()
# 获取人脸关键点检测器
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
#获取人脸框位置信息
dets = detector(gray, 1)#1表示采样(upsample)次数 0识别的人脸少点,1识别的多点,2识别的更多,小脸也可以识别
for face in dets:
  shape = predictor(img, face) # 寻找人脸的68个标定点
  # 遍历所有点,打印出其坐标,并圈出来
  for pt in shape.parts():
    pt_pos = (pt.x, pt.y)
    cv2.circle(img, pt_pos, 2, (0, 0, 255), 1)#img, center, radius, color, thickness

  cv2.imshow("image", img)

cv2.waitKey(0)
cv2.destroyAllWindows()

(2) 多人脸情况

import cv2
import dlib

path1 = "zxc.jpg"
img = cv2.imread(path1)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#人脸检测画框
detector = dlib.get_frontal_face_detector()
# 获取人脸关键点检测器
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
#获取人脸框位置信息
dets = detector(gray, 1)#1表示采样(upsample)次数 0识别的人脸少点,1识别的多点,2识别的更多,小脸也可以识别

for i in range(len(dets)):
  shape = predictor(img, dets[i]) # 寻找人脸的68个标定点
  # 遍历所有点,打印出其坐标,并圈出来
  for pt in shape.parts():
    pt_pos = (pt.x, pt.y)
    cv2.circle(img, pt_pos, 2, (0, 0, 255), 1)#img, center, radius, color, thickness

cv2.imshow("image", img)

cv2.waitKey(0)#等待键盘输入
cv2.destroyAllWindows()

(3) 获取电脑摄像头实时识别标定

import cv2
import dlib
import numpy as np

cap = cv2.VideoCapture(0)#打开笔记本的内置摄像头,若参数是视频文件路径则打开视频
cap.isOpened()

def key_points(img):
  points_keys = []
  PREDICTOR_PATH = "shape_predictor_68_face_landmarks.dat"
  detector = dlib.get_frontal_face_detector()
  predictor = dlib.shape_predictor(PREDICTOR_PATH)
  rects = detector(img,1)

  for i in range(len(rects)):
    landmarks = np.matrix([[p.x,p.y] for p in predictor(img,rects[i]).parts()])
    for point in landmarks:
      pos = (point[0,0],point[0,1])
      points_keys.append(pos)
      cv2.circle(img,pos,2,(255,0,0),-1)
  return img

while(True):
  ret, frame = cap.read()#按帧读取视频,ret,frame是cap.read()方法的两个返回值。其中ret是布尔值,如果读取帧是正确的则返回True,如果文件读取到结尾,它的返回值就为False。frame就是每一帧的图像,是个三维矩阵。
  # gray = cv2.cvtColor(frame)
  face_key = key_points(frame)
  cv2.imshow('frame',face_key)
  if cv2.waitKey(1) & 0xFF == ord('q'):
    break

cap.release()#释放摄像头
cv2.destroyAllWindows()#关闭所有图像窗口

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python检查和同步本地时间(北京时间)的实现方法

背景 有时本地服务器的时间不准了,需要同步互联网上的时间。 解决方案 NTP时间同步,找到一些可用的NTP服务器进行同步即可。 通过获取一些大型网站的时间来同步为自己的时间...

python实现二分类的卡方分箱示例

解决的问题: 1、实现了二分类的卡方分箱; 2、实现了最大分组限定停止条件,和最小阈值限定停止条件; 问题,还不太清楚,后续补充。 1、自由度k,如何来确定,卡方阈值的自由度为 分箱数-...

python3+PyQt5 实现Rich文本的行编辑方法

本文通过Python3+PyQt5实现《python Qt Gui 快速编程》这本书13章程序Rich文本的行编辑,可以通过鼠标右键选择对文本进行加粗,斜体,下划线,删除线,上标,下标等...

python3+PyQt5实现使用剪贴板做复制与粘帖示例

python3+PyQt5实现使用剪贴板做复制与粘帖示例

本文是对《Python Qt GUI快速编程》的第10章的例子剪贴板用Python3+PyQt5进行改写,分别对文本,图片和html文本的复制与粘帖,三种做法大同小异。 #!/usr...

Python3实现配置文件差异对比脚本

Python3实现配置文件差异对比脚本

应用场景:配置文件由于升级改动了,我们想看看升级后的配置文件相对于之前的改动了哪些配置项 注意:这个脚本只能检测的配置文件是键值对的形式,就是key=value的形式 我在网上找了好久没...