关于numpy数组轴的使用详解

yipeiwu_com6年前Python基础

概述

按照图一中aixs=0,对aixs=0上下对应的数据进行相加在学习numpy的时候,最难理解的就是轴的概念,我们知道坐标系中有轴的概念,那么两个轴是否有关联呢?为了便于理解,特写此博客进行梳理。

正文

首先数组的维数比较好理解,下面我们创建一个数组:

import numpy as np
# 创建一个三维数组
b=np.arange(24).reshape(4,3,2)

打印结果:

[[[ 0 1]
 [ 2 3]
 [ 4 5]]
 
 [[ 6 7]
 [ 8 9]
 [10 11]]
 
 [[12 13]
 [14 15]
 [16 17]]

b 是一个三维数组:

第一维有三个元素

第二维有三个元素

第三维有四个元素

上面的数据也可以用下列方式展示(图一)

对于下面按照aixs=0进行sum:

print(b.sum(0))

按照图一中aixs=0,对aixs=0上下对应的数据进行相加,数据从(4,3,2)降维到(3,2)

[[0+ 6+12+18=36  1+ 7+13+19=40]
 [2+ 8+14+20=44  3+ 9+15+21=48]
 [4+10+16+22=52  5+11+17+23=56]]

对于下面按照aixs=1进行sum:

print(b.sum(1))

按照图一中aixs=1,按照比1小的轴对数据进行划分(即aixs=0),然后对划分的每一部分中数据中的aixs=1上下对应的数据进行相加,数据从(4,3,2)降维到(4,2)

[[ 0+ 2+ 4=6  1+ 3+ 5=9]
 [ 6+ 8+10=24 7+ 9+11=27]
 [12+14+16=42 13+15+17=45]
 [18+20+22=60 19+21+23+63]]

对于下面按照aixs=2进行sum:

print(b.sum(2))

按照图一中aixs=2,按照比2小的轴对数据进行划分(即aixs=0,aixs=1),然后对划分的每一部分中数据中的aixs=2上下对应的数据进行相加,数据从(4,3,2)降维到(4,3)

[[ 0+ 1=1  2+ 3=5  4+ 5=9]
 [ 6+ 7=13 8+ 9=17 10+11=21]
 [12+13=25 14+15=29 16+17=33]
 [18+19=37 20+21=41 22+23=45]]

总结:

aixs的范围是0到数组的维数(不包括维数)

轴的划分是按照维数进行

相加时按照轴进行对象相加,但是不能跨越比当前轴低的轴

以上这篇关于numpy数组轴的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现的批量下载RFC文档

RFC文档有很多,有时候在没有联网的情况下也想翻阅,只能下载一份留存本地了。 看了看地址列表,大概是这个范围: http://www.networksorcery.com/enp/rfc...

python 实现矩阵上下/左右翻转,转置的示例

python中没有二维数组,用一个元素为list的list(matrix)保存矩阵,row为行数,col为列数 1. 上下翻转:只需要把每一行的list交换即可 for i in r...

用Python解决计数原理问题的方法

用Python解决计数原理问题的方法

前几天遇到这样一道数学题: 用四种不同颜色给三棱柱六个顶点涂色,要求每个点涂一种颜色,且每条棱的两个端点涂不同颜色,则不同的涂色方法有多少种? 当我看完题目后,顿时不知所措。于是我拿起...

Python函数的参数常见分类与用法实例详解

本文实例讲述了Python函数的参数常见分类与用法。分享给大家供大家参考,具体如下: 1.形参与实参是什么? 形参(形式参数):指的是 在定义函数时,括号内定义的参数,形参其实就是变量名...

Django保护敏感信息的方法示例

Django在安全性上表现出色,但是在日常开发中难免会有没有注意到的地方,今天我们就讲一个非常有用的技巧。 千万不要在正式环境中设置DEBUG=True,除非你想跑路 sensitiv...