关于numpy数组轴的使用详解

yipeiwu_com6年前Python基础

概述

按照图一中aixs=0,对aixs=0上下对应的数据进行相加在学习numpy的时候,最难理解的就是轴的概念,我们知道坐标系中有轴的概念,那么两个轴是否有关联呢?为了便于理解,特写此博客进行梳理。

正文

首先数组的维数比较好理解,下面我们创建一个数组:

import numpy as np
# 创建一个三维数组
b=np.arange(24).reshape(4,3,2)

打印结果:

[[[ 0 1]
 [ 2 3]
 [ 4 5]]
 
 [[ 6 7]
 [ 8 9]
 [10 11]]
 
 [[12 13]
 [14 15]
 [16 17]]

b 是一个三维数组:

第一维有三个元素

第二维有三个元素

第三维有四个元素

上面的数据也可以用下列方式展示(图一)

对于下面按照aixs=0进行sum:

print(b.sum(0))

按照图一中aixs=0,对aixs=0上下对应的数据进行相加,数据从(4,3,2)降维到(3,2)

[[0+ 6+12+18=36  1+ 7+13+19=40]
 [2+ 8+14+20=44  3+ 9+15+21=48]
 [4+10+16+22=52  5+11+17+23=56]]

对于下面按照aixs=1进行sum:

print(b.sum(1))

按照图一中aixs=1,按照比1小的轴对数据进行划分(即aixs=0),然后对划分的每一部分中数据中的aixs=1上下对应的数据进行相加,数据从(4,3,2)降维到(4,2)

[[ 0+ 2+ 4=6  1+ 3+ 5=9]
 [ 6+ 8+10=24 7+ 9+11=27]
 [12+14+16=42 13+15+17=45]
 [18+20+22=60 19+21+23+63]]

对于下面按照aixs=2进行sum:

print(b.sum(2))

按照图一中aixs=2,按照比2小的轴对数据进行划分(即aixs=0,aixs=1),然后对划分的每一部分中数据中的aixs=2上下对应的数据进行相加,数据从(4,3,2)降维到(4,3)

[[ 0+ 1=1  2+ 3=5  4+ 5=9]
 [ 6+ 7=13 8+ 9=17 10+11=21]
 [12+13=25 14+15=29 16+17=33]
 [18+19=37 20+21=41 22+23=45]]

总结:

aixs的范围是0到数组的维数(不包括维数)

轴的划分是按照维数进行

相加时按照轴进行对象相加,但是不能跨越比当前轴低的轴

以上这篇关于numpy数组轴的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pytorch 使用单个GPU与多个GPU进行训练与测试的方法

如下所示: device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")#第一行代码 model.t...

python决策树之CART分类回归树详解

python决策树之CART分类回归树详解

决策树之CART(分类回归树)详解,具体内容如下 1、CART分类回归树简介   CART分类回归树是一种典型的二叉决策树,可以处理连续型变量和离散型变量。如...

详解supervisor使用教程

详解supervisor使用教程

A Process Control System 使用b/s架构、运行在类Unix系统上一个进程监控管理系统它可以使进程以daemon方式运行,并且一直监控进程,在意外退出时能自动重启进...

Python 实现OpenCV格式和PIL.Image格式互转

OpenCV转换成PIL.Image格式: import cv2 from PIL import Image import numpy img = cv2.imread("...

Python魔术方法详解

Python魔术方法详解

介绍 此教程为我的数篇文章中的一个重点。主题是魔术方法。 什么是魔术方法?他们是面向对象的Python的一切。他们是可以给你的类增加"magic"的特殊方法。他们总是被双下划线所...