Python Sympy计算梯度、散度和旋度的实例

yipeiwu_com6年前Python基础

sympy有个vector 模块,里面提供了求解标量场、向量场的梯度、散度、旋度等计算,官方参考连接:

http://docs.sympy.org/latest/modules/vector/index.html

sympy中计算梯度、散度和旋度主要有两种方式:

一个是使用∇∇算子,sympy提供了类Del(),该类的方法有:cross、dot和gradient,cross就是叉乘,计算旋度的,dot是点乘,用于计算散度,gradient自然就是计算梯度的。

另一种方法就是直接调用相关的API:curl、divergence和gradient,这些函数都在模块sympy.vector 下面。

使用sympy计算梯度、散度和旋度之前,首先要确定坐标系,sympy.vector模块里提供了构建坐标系的类,常见的是笛卡尔坐标系, CoordSys3D,根据下面的例子可以了解到相应应用。

(1)计算梯度

## 1 gradient

C = CoordSys3D('C')
delop = Del() # nabla算子

# 标量场 f = x**2*y-xy
f = C.x**2*C.y - C.x*C.y

res = delop.gradient(f, doit=True) # 使用nabla算子
# res = delop(f).doit()
res = gradient(f) # 直接使用gradient

print(res) # (2*C.x*C.y - C.y)*C.i + (C.x**2 - C.x)*C.j

(2)计算散度

## divergence

C = CoordSys3D('C')
delop = Del() # nabla算子

# 向量场 f = x**2*y*i-xy*j
f = C.x**2*C.y*C.i - C.x*C.y*C.j

res = delop.dot(f, doit=True)

# res = divergence(f)

print(res) # 2*C.x*C.y - C.x,即2xy-x,向量场的散度是标量

(3)计算旋度

## curl

C = CoordSys3D('C')
delop = Del() # nabla算子

# 向量场 f = x**2*y*i-xy*j
f = C.x**2*C.y*C.i - C.x*C.y*C.j

res = delop.cross(f, doit=True)

# res = curl(f)

print(res) # (-C.x**2 - C.y)*C.k,即(-x**2-y)*k,向量场的旋度是向量

以上这篇Python Sympy计算梯度、散度和旋度的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中的四种交换数值的方法解析

Python中的四种交换数值的方法解析

这篇文章主要介绍了Python中的四种交换数值的方法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 交换两个变量的值方法,这个面试...

详解Python的Django框架中inclusion_tag的使用

另外一类常用的模板标签是通过渲染 其他 模板显示数据的。 比如说,Django的后台管理界面,它使用了自定义的模板标签来显示新增/编辑表单页面下部的按钮。 那些按钮看起来总是一样的,但是...

Python Django框架单元测试之文件上传测试示例

Python Django框架单元测试之文件上传测试示例

本文实例讲述了Python Django框架单元测试之文件上传测试。分享给大家供大家参考,具体如下: Submitting files is a special case. To POS...

pow在python中的含义及用法

pow()方法返回xy(x的y次方) 的值 语法 以下是math模块pow()方法的语法: import math math.pow( x, y ) 内置的pow()方法 p...

利用Python求阴影部分的面积实例代码

利用Python求阴影部分的面积实例代码

一、前言说明 今天看到微信群里一道六年级数学题,如下图,求阴影部分面积 看起来似乎并不是很难,可是博主添加各种辅助线,写各种方法都没出来,不得已而改用写Python代码来求面积了 二、...