python多进程并发demo实例解析

yipeiwu_com6年前Python基础

这篇文章主要介绍了python多进程并发demo实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

前言

下午需要简单处理一份数据,就直接随手写脚本处理了,但发现效率太低,速度太慢,就改成多进程了;

程序涉及计算、文件读写,鉴于计算内容挺多的,就用多进程了(计算密集)。

代码

import pandas as pd
from pathlib import Path
from concurrent.futures import ProcessPoolExecutor

parse_path = '/data1/v-gazh/CRSP/dsf_full_fields/parse'
source_path = '/data1/v-gazh/CRSP/dsf_full_fields/2th_split' # 目录中有3.3W个csv文件,串行的话,效率大打折扣


def parseData():
  source_path_list = list(Path(source_path).glob('*.csv'))
  multi_process = ProcessPoolExecutor(max_workers=20)
  multi_results = multi_process.map(func, source_path_list)


def func(p):
  source_p = str(p)
  parse_p = str(p).replace('2th_split', 'parse')
  df = pd.read_csv(source_p)
  df['date'] = pd.to_datetime(df['date'].astype(str)).dt.date
  df.sort_values(['date'], inplace=True)
  # 处理close为负的值(abs),添加status标识
  df['is_close'] = df['PRC'].map(lambda x: 0 if x < 0 or pd.isna(x) else 1)
  df['PRC'] = df['PRC'].abs()
  df.rename(columns={'CFACPR': 'factor'}, inplace=True)
  df['adj_low'] = df['BIDLO'] * df['factor']
  df['adj_high'] = df['ASKHI'] * df['factor']
  df['adj_close'] = df['PRC'] * df['factor']
  df['adj_open'] = df['OPENPRC'] * df['factor']
  df['adj_volume'] = df['VOL'] / df['factor']
  # calc change
  df['change'] = df['adj_close'].diff(1) / df['adj_close'].shift(1)   df.drop_duplicates(inplace=True)
  df.to_csv(parse_p, index=False)
parseData()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python mysql断开重连的实现方法

python mysql断开重连的实现方法

后台服务在运行时发现一个问题,运行约15分钟后,接口请求报错 pymysql.err.InterfaceError: (0, '') 这个错误提示一般发生在将None赋给多个值,定...

python连接mysql实例分享

示例一 #coding=UTF-8 import sys import MySQLdb import time reload(sys) sys.setdefaultencodin...

Python实现的几个常用排序算法实例

前段时间为准备百度面试恶补的东西,虽然最后还是被刷了,还是把那几天的“战利品”放点上来,算法一直是自己比较薄弱的地方,以后还要更加努力啊。 下面用Python实现了几个常用的排序,如快速...

CentOS 7 安装python3.7.1的方法及注意事项

安装wget yum -y install wget 创建一个download目录用于下载各种安装包 mkdir download 切换到刚创建的download目录中 cd downl...

Python函数学习笔记

局部名字静态检测 Python探测局部作用域的时候:是在python编译代码时检测,而不是通过他们在运行时的赋值。 正常的情况下,没在函数中复制的名字将在包含它的模块中查找: >&...