Python实现word2Vec model过程解析

yipeiwu_com6年前Python基础

这篇文章主要介绍了Python实现word2Vec model过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

import gensim, logging, os
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
import nltk

corpus = nltk.corpus.brown.sents()

fname = 'brown_skipgram.model'
if os.path.exists(fname):
  # load the file if it has already been trained, to save repeating the slow training step below
  model = gensim.models.Word2Vec.load(fname)
else:
  # can take a few minutes, grab a cuppa
  model = gensim.models.Word2Vec(corpus, size=100, min_count=5, workers=2, iter=50)
  model.save(fname)

words = "woman women man girl boy green blue".split()
for w1 in words:
  for w2 in words:
    print(w1, w2, model.similarity(w1, w2))

print(model.most_similar(positive=['woman', ''], topn=1))
print(model.similarity('woman', 'girl'))girl

在gensim模块中已经封装了13年提出的model--word2vec,所以我们直接开始建立模型

这是建立模型的过程,最后会出现saving Word2vec的语句,代表已经成功建立了模型

这是输入了 gorvement和news关键词后 所反馈的词语 --- administration, 他们之间的相关性是0.508

当我在输入 women 和 man ,他们显示的相关性的0.638 ,已经是非常高的一个数字。

值得一提的是,我用的语料库是直接从nltk里的brown语料库。其中大概包括了一些新闻之类的数据。

大家如果感兴趣的话,可以自己建立该模型,通过传入不同的语料库,来calc 一些term的 相关性噢

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python处理json数据中的中文

python中自带了处理python的模块,使用时候直接import json即可。 使用loads方法即可将json字符串转换成python对象,对应关系如下: JSON ...

Python 机器学习库 NumPy入门教程

NumPy是一个Python语言的软件包,它非常适合于科学计算。在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础库。 本文是对它的一个入门教程。 介绍 NumP...

python虚拟环境virtualenv的使用教程

virtualenv 是一个创建隔绝的Python环境的工具。virtualenv创建一个包含所有必要的可执行文件的文件夹,用来使用Python工程所需的包。 安装 pip inst...

PyQt5实现下载进度条效果

PyQt5实现下载进度条效果

起因是因为公司要开发一款自动登录某网站的助手工具提供给客户使用,要使用到selenium,所以选择了pyqt5的方式来开发这个C/S架构的客户端 在过程中要用到自动更新的功能,所以自己写...

Python3 串口接收与发送16进制数据包的实例

如下所示: import serial import string import binascii s=serial.Serial('com4',9600) s.open() #接收...