python 比较2张图片的相似度的方法示例

yipeiwu_com6年前Python基础

本文介绍了python 比较2张图片的相似度的方法示例,分享给大家,具体如下:

#!/usr/bin/python
# -*- coding: UTF-8 -*-
import cv2
import numpy as np
 
#均值哈希算法
def aHash(img):
  #缩放为8*8
  img=cv2.resize(img,(8,8),interpolation=cv2.INTER_CUBIC)
  #转换为灰度图
  gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
  #s为像素和初值为0,hash_str为hash值初值为''
  s=0
  hash_str=''
  #遍历累加求像素和
  for i in range(8):
    for j in range(8):
      s=s+gray[i,j]
  #求平均灰度
  avg=s/64
  #灰度大于平均值为1相反为0生成图片的hash值
  for i in range(8):
    for j in range(8):
      if gray[i,j]>avg:
        hash_str=hash_str+'1'
      else:
        hash_str=hash_str+'0'
  return hash_str
 
#差值感知算法
def dHash(img):
  #缩放8*8
  img=cv2.resize(img,(9,8),interpolation=cv2.INTER_CUBIC)
  #转换灰度图
  gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
  hash_str=''
  #每行前一个像素大于后一个像素为1,相反为0,生成哈希
  for i in range(8):
    for j in range(8):
      if  gray[i,j]>gray[i,j+1]:
        hash_str=hash_str+'1'
      else:
        hash_str=hash_str+'0'
  return hash_str
 
#Hash值对比
def cmpHash(hash1,hash2):
  n=0
  #hash长度不同则返回-1代表传参出错
  if len(hash1)!=len(hash2):
    return -1
  #遍历判断
  for i in range(len(hash1)):
    #不相等则n计数+1,n最终为相似度
    if hash1[i]!=hash2[i]:
      n=n+1
  return n
 
img1=cv2.imread('A.png')
img2=cv2.imread('B.png')
hash1= aHash(img1)
hash2= aHash(img2)
print(hash1)
print(hash2)
n=cmpHash(hash1,hash2)
print '均值哈希算法相似度:'+ str(n)
 
hash1= dHash(img1)
hash2= dHash(img2)
print(hash1)
print(hash2)
n=cmpHash(hash1,hash2)
print '差值哈希算法相似度:'+ str(n)

讲解

相似图像搜索的哈希算法有三种:

  • 均值哈希算法
  • 差值哈希算法
  • 感知哈希算法
  • 均值哈希算法

步骤

缩放:图片缩放为8*8,保留结构,出去细节。
灰度化:转换为256阶灰度图。
求平均值:计算灰度图所有像素的平均值。
比较:像素值大于平均值记作1,相反记作0,总共64位。
生成hash:将上述步骤生成的1和0按顺序组合起来既是图片的指纹(hash)。顺序不固定。但是比较时候必须是相同的顺序。
对比指纹:将两幅图的指纹对比,计算汉明距离,即两个64位的hash值有多少位是不一样的,不相同位数越少,图片越相似。

代码实现: 

#均值哈希算法
def aHash(img):
  #缩放为8*8
  img=cv2.resize(img,(8,8),interpolation=cv2.INTER_CUBIC)
  #转换为灰度图
  gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
  #s为像素和初值为0,hash_str为hash值初值为''
  s=0
  hash_str=''
  #遍历累加求像素和
  for i in range(8):
    for j in range(8):
      s=s+gray[i,j]
  #求平均灰度
  avg=s/64
  #灰度大于平均值为1相反为0生成图片的hash值
  for i in range(8):
    for j in range(8):
      if gray[i,j]>avg:
        hash_str=hash_str+'1'
      else:
        hash_str=hash_str+'0'      
  return hash_str

差值哈希算法

差值哈希算法前期和后期基本相同,只有中间比较hash有变化。

步骤
1. 缩放:图片缩放为8*9,保留结构,出去细节。
2. 灰度化:转换为256阶灰度图。
3. 求平均值:计算灰度图所有像素的平均值。
4. 比较:像素值大于后一个像素值记作1,相反记作0。本行不与下一行对比,每行9个像素,八个差值,有8行,总共64位
5. 生成hash:将上述步骤生成的1和0按顺序组合起来既是图片的指纹(hash)。顺序不固定。但是比较时候必须是相同的顺序。
6. 对比指纹:将两幅图的指纹对比,计算汉明距离,即两个64位的hash值有多少位是不一样的,不相同位数越少,图片越相似。

#差值感知算法
def dHash(img):
  #缩放8*8
  img=cv2.resize(img,(9,8),interpolation=cv2.INTER_CUBIC)
  #转换灰度图
  gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
  hash_str=''
  #每行前一个像素大于后一个像素为1,相反为0,生成哈希
  for i in range(8):
    for j in range(8):
      if  gray[i,j]>gray[i,j+1]:
        hash_str=hash_str+'1'
      else:
        hash_str=hash_str+'0'
  return hash_str

感知哈希算法

感知哈希算法可以参考
相似性︱python+opencv实现pHash算法+hamming距离(simhash)(三)
讲的很详细了。

Hash值对比

由于返回值为str字符串,所以直接遍历字符串进行比对。

#Hash值对比
def cmpHash(hash1,hash2):
  n=0
  #hash长度不同则返回-1代表传参出错
  if len(hash1)!=len(hash2):
    return -1
  #遍历判断
  for i in range(len(hash1)):
    #不相等则n计数+1,n最终为相似度
    if hash1[i]!=hash2[i]:
      n=n+1
  return n

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python字典的常用方法总结

python字典的常用方法总结

python中字典是非常常用的数据类型,了解各种方法的作用及优缺点对于字典的使用非常有用。 dict.clear() 的方法用于清空所有的键值对,清空后字典变成空字典。代码示例如下:...

python中的字典使用分享

字典中的键使用时必须满足一下两个条件: 1、每个键只能对应一个项,也就是说,一键对应多个值时不允许的(列表、元组和其他字典的容器对象除外)。当有键发生冲突时(即字典键重复赋值),取最后的...

python opencv捕获摄像头并显示内容的实现

1、捕获摄像头和实时显示 import cv2 import numpy as np import pickle import matplotlib.pyplot as plt...

python匹配两个短语之间的字符实例

如下所示: def ref_txt_demo(): f = open('1.txt', 'r') data = f.readlines() for line in data:...

K-近邻算法的python实现代码分享

K-近邻算法的python实现代码分享

k-近邻算法概述: 所谓k-近邻算法KNN就是K-Nearest neighbors Algorithms的简称,它采用测量不同特征值之间的距离方法进行分类 用官方的话来说,所谓K近邻...