利用OpenCV和Python实现查找图片差异

yipeiwu_com5年前Python基础

使用OpenCV和Python查找图片差异

flyfish

方法1 均方误差的算法(Mean Squared Error , MSE)

下面的一些表达与《TensorFlow - 协方差矩阵》式子表达式一样的

拟合 误差平方和( sum of squared errors)

residual sum of squares (RSS), also known as the sum of squared residuals (SSR) or the sum of squared errors of prediction (SSE),
also known as 就我们所说的
RSS, SSR ,SSE表达的是一个意思

def mse(imageA, imageB):
 # the 'Mean Squared Error' between the two images is the
 # sum of the squared difference between the two images;
 # NOTE: the two images must have the same dimension
 err = np.sum((imageA.astype("float") - imageB.astype("float")) ** 2)
 err /= float(imageA.shape[0] * imageA.shape[1])

 # return the MSE, the lower the error, the more "similar"
 # the two images are
 return err

方法2 SSIM

​structural similarity index measurement (SSIM) system

一种衡量两幅图像结构相似度的新指标,其值越大越好,最大为1。

新建一个Python文件,命名为 image_diff.py

原文

Image Difference with OpenCV and Python

原理

根据参数读取两张图片并转换为灰度:

使用SSIM计算两个图像之间的差异,这种方法已经在scikit-image 库中实现

在两个图像之间的不同部分绘制矩形边界框。

代码如下 已编译通过

from skimage.measure import compare_ssim
#~ import skimage as ssim
import argparse
import imutils
import cv2

# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-f", "--first", required=True,
 help="first input image")
ap.add_argument("-s", "--second", required=True,
 help="second")
args = vars(ap.parse_args())
# load the two input images
imageA = cv2.imread(args["first"])
imageB = cv2.imread(args["second"])
'''
imageA = cv2.imread("E:\\1.png")
imageB = cv2.imread("E:\\2.png")
'''
# convert the images to grayscale
grayA = cv2.cvtColor(imageA, cv2.COLOR_BGR2GRAY)
grayB = cv2.cvtColor(imageB, cv2.COLOR_BGR2GRAY)

# compute the Structural Similarity Index (SSIM) between the two
# images, ensuring that the difference image is returned
#​structural similarity index measurement (SSIM) system一种衡量两幅图像结构相似度的新指标,其值越大越好,最大为1。

(score, diff) = compare_ssim(grayA, grayB, full=True)
diff = (diff * 255).astype("uint8")
print("SSIM: {}".format(score))

# threshold the difference image, followed by finding contours to
# obtain the regions of the two input images that differ
thresh = cv2.threshold(diff, 0, 255,
 cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
 cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if imutils.is_cv2() else cnts[1]

# loop over the contours
for c in cnts:
 # compute the bounding box of the contour and then draw the
 # bounding box on both input images to represent where the two
 # images differ
 (x, y, w, h) = cv2.boundingRect(c)
 cv2.rectangle(imageA, (x, y), (x + w, y + h), (0, 0, 255), 2)
 cv2.rectangle(imageB, (x, y), (x + w, y + h), (0, 0, 255), 2)

# show the output images
cv2.imshow("Original", imageA)
cv2.imshow("Modified", imageB)
cv2.imshow("Diff", diff)
cv2.imshow("Thresh", thresh)
cv2.waitKey(0)

使用方法

python image_diff.py –first original.png –second images/modified.png 

如果不想使用参数将参数代码部分直接变成

imageA = cv2.imread(“E:\1.png”) 
imageB = cv2.imread(“E:\2.png”)

以上这篇利用OpenCV和Python实现查找图片差异就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Django跨域请求问题的解决方法示例

前言 本文主要给大家介绍了关于Django跨域请求问题解决的几种方法,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧。 几种方法: 使用django-cors-he...

利用Python中的mock库对Python代码进行模拟测试

 如何不靠耐心测试 通常,我们编写的软件会直接与那些我们称之为“肮脏的”服务交互。通俗地说,服务对我们的应用来说是至关重要的,它们之间的交互是我们设计好的,但这会带来我们不希望...

Python找出最小的K个数实例代码

题目描述 输入n个整数,找出其中最小的K个数。例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,。 这个题目完成的思路有很多,很多排序算法都可以完成既定...

使用apidoc管理RESTful风格Flask项目接口文档方法

使用apidoc管理RESTful风格Flask项目接口文档方法

使用apidoc管理RESTful风格Flask项目接口文档方法 apidoc项目地址 flask扩展包地址 文档示例地址 1.安装nodejs sudo apt-get insta...

python使用TensorFlow进行图像处理的方法

一、图片的放大缩小 在使用TensorFlow进行图片的放大缩小时,有三种方式: 1、tf.image.resize_nearest_neighbor():临界点插值 2、tf.i...