python 利用已有Ner模型进行数据清洗合并代码

yipeiwu_com6年前Python基础

我就废话不多说了,直接上代码吧!

# -*- coding: utf-8 -*-
from kashgari.corpus import DataReader
import re
from tqdm import tqdm


def cut_text(text, lenth):
  textArr = re.findall('.{' + str(lenth) + '}', text)
  textArr.append(text[(len(textArr) * lenth):])
  return textArr


def clean_data(source_file, target_file, ner_model):
  
  data_x, data_y = DataReader().read_conll_format_file(source_file)

  with tqdm(total=len(data_x)) as pbar:
    for idx, text_array in enumerate(data_x):
      if len(text_array) <= 100:
        ners = ner_model.predict([text_array])
        ner = ners[0]
      else:
        texts = cut_text(''.join(text_array), 100)
        ners = []
        for text in texts:
          ner = ner_model.predict([[char for char in text]])
          ners = ners + ner[0]
        ner = ners     
      # print('[-----------------------', idx, len(data_x))
      # print(data_y[idx])
      # print(ner)
    
      for jdx, t in enumerate(text_array):
        if ner[jdx].startswith('B') or ner[jdx].startswith('I') :
          if data_y[idx][jdx] == 'O':
            data_y[idx][jdx] = ner[jdx]
      
      # print(data_y[idx])
      # print('-----------------------]') 
      pbar.update(1)
      
  f = open(target_file, 'a', encoding="utf-8")  
  for idx, text_array in enumerate(data_x):
    if idx != 0:
      f.writelines(['\n'])  
    for jdx, t in enumerate(text_array):
      text = t + ' ' + data_y[idx][jdx] 
      if idx == 0 and jdx == 0:
        text = text
      else:
        text = '\n' + text
      f.writelines([text])  
  
  f.close()  
  
  data_x2, data_y2 = DataReader().read_conll_format_file(source_file)
  print(data_x == data_x2, len(data_y) == len(data_y2), '数据清洗完成')       
# -*- coding: utf-8 -*-
import kashgari
from data_tools import clean_data
time_ner = kashgari.utils.load_model('time_ner.h5')
clean_data('./data/example.dev', 'example.dev', time_ner)

以上这篇python 利用已有Ner模型进行数据清洗合并代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python pandas dataframe 行列选择,切片操作方法

SQL中的select是根据列的名称来选取;Pandas则更为灵活,不但可根据列名称选取,还可以根据列所在的position(数字,在第几行第几列,注意pandas行列的position...

使用python进行波形及频谱绘制的方法

如下所示: # -*- coding: UTF-8 -*- import wave import numpy as np import matplotlib.pyplot as pl...

Python中获取对象信息的方法

当我们拿到一个对象的引用时,如何知道这个对象是什么类型、有哪些方法呢? 使用type() 首先,我们来判断对象类型,使用type()函数: 基本类型都可以用type()判断: >...

Django forms组件的使用教程

编写Django的form表单,非常类似我们在模型系统里编写一个模型。在模型中,一个字段代表数据表的一列,而form表单中的一个字段代表<form>中的一个<input...

python开发之str.format()用法实例分析

本文实例分析了python开发之str.format()用法。分享给大家供大家参考,具体如下: 格式化一个字符串的输出结果,我们在很多地方都可以看到,如:c/c++中都有见过 下面看看p...