Numpy之reshape()使用详解

yipeiwu_com6年前Python基础

如下所示:

Numpy中reshape的使用方法为:numpy.reshape(a, newshape, order='C')

参数详解:

1.a: type:array_like(伪数组,可以看成是对数组的扩展,但是不影响原始数组。)

需要reshape的array

2.newshape:新的数组

新形状应与原形状兼容。如果是整数,那么结果将是该长度的一维数组。一个形状尺寸可以是-1。在本例中,值是 从数组的长度和剩余维度推断出来的。

3.order: 可选为(C, F, A)

C: 按照行来填充

F: 按照列的顺序来填充

A: 按任意方向,(default)。 这里相当于行

4.returns: ndarray,即返回一或多维数组

实战:

首先,先创建几个n维数组

import numpy as np

这里的意思是创建了一个2维数组

这里创建了一个3维2X2的数组。

这是四维

(1,2) 表示 [[ 0, 1]]
(3,1,2)表示3个(1,2):
[[[ 0, 1]],
[[ 2, 3]],
[[ 4, 5]]],
(2,3,1,2)表示2个(3,1,2):
[ [[[ 0, 1]],
[[ 2, 3]],
[[ 4, 5]]],

[[[ 6, 7]],
[[ 8, 9]],
[[10, 11]]] ]

了解了newshape里面的东西,reshape基本没啥问题了。

我们再来看看order。

分别利用C,F,A来填充数据:

这就是reshape基本用法。

以上这篇Numpy之reshape()使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python3 max()函数基础用法

描述 max() 方法返回给定参数的最大值,参数可以为序列。 语法 以下是 max() 方法的语法: max( x, y, z, .... ) 参数 x -- 数值表...

详解Python实现进度条的4种方式

详解Python实现进度条的4种方式

这里只列举了部分方法,其他方法或python库暂时还没使用到 1.不用库,直接打印: 代码样例: import time #demo1 def process_bar(percent...

python调用百度REST API实现语音识别

目前,语音识别,即将语音内容转换为文字的技术已经比较成熟,遥想当时锤子发布会上展示的讯飞输入法语音识别,着实让讯飞火了一把。由于此类语音识别需要采集大量的样本,才能达到一定的准确度,个人...

python中format()函数的简单使用教程

python中format()函数的简单使用教程

先给大家介绍下python中format函数,在文章下面给大家介绍python.format()函数的简单使用 ---恢复内容开始--- python中format函数用于字符串的格式化...

Python类方法__init__和__del__构造、析构过程分析

最近学习《Python参考手册》学到Class部分,遇到了类的构造析构部分的问题: 1、什么时候构造? 2、什么时候析构? 3、成员变量如何处理? 4、Python中的共享成员函数如何访...