Pandas 解决dataframe的一列进行向下顺移问题

yipeiwu_com6年前Python基础

最近做比赛,有时候需要造出新的特征,而这次遇到的问题是将一列数据往下顺移一位。同时将开头缺失的那一个数据用其他方式填充。

df['feature'].shift(1)向下顺移一位,这时第一位会置为nan,需要填充。

----------------------历史分割线-----------------

错误方案:

当时首先想到的是用loc来直接进行替换,也就是

  i = len(dt)
 
  dt_new = pd.DataFrame()
 
  dt_new.loc[0, 'test'] = 0
 
  dt_new.loc[1 : i - 1, 'test'] = dt.loc[0 : i - 2, 'data'] #这里会报错

愿望很美好,现实很残酷,这种方法会报错。

不太好的方案:

于是打算用循环的办法一个一个替换

dt_new = pd.DataFrame()
 
dt_new.loc[0, 'test'] = 0
 
for i in range(len(dt) - 1):
  dt_new.loc[i + 1, 'test'] = dt.loc[i, 'data']

然而这个仅仅O(n)算法复杂度的东西,实际检验当用在几万行数据真的可以给你算好久好久,所以这个办法也弃用了。

正确方案:

pandas的dataframe,每一行是有序号的,直接进行替换的话,有时它会将相同序号的进行替换,这个是dataFrame的特性,有时会忽略从你选择的那一行开始替换,而直接从0开始。所以如果想用pandas来进行顺位移动的话,目前没有在API中找到便捷的方法。

最后终于想到了另外一个办法,就是转化为Numpy数组进行移动后,再转回dataFrame。

  dt_v = dt['data'].values
 
  dt_v = dt_v.flatten()
 
  i = len(dt)
 
  dt_new_v = np.zeros(i)
 
  dt_new_v[0] = 0
 
  dt_new_v[1 : i] = dt_v[0 : i - 1] #这里要注意Numpy数组截取[1, i]实际截取的是[1, i - 1]行!
 
  dt_new = pd.DataFrame()
 
  dt_new['test'] = dt_new_v

要注意Numpy数组截取[1, i]实际截取的是第[1, i - 1]行!

以上这篇Pandas 解决dataframe的一列进行向下顺移问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

django主动抛出403异常的方法详解

django主动抛出403异常的方法详解

前言 网上的做法基本都是下面的代码 return HttpResponseForbidden() 试了一下,效果一般,没有异常页面显示,最终显示的是浏览器的异常页面,如下图: 设...

Python3 replace()函数使用方法

描述 replace() 方法把字符串中的 old(旧字符串) 替换成 new(新字符串),如果指定第三个参数max,则替换不超过 max 次。 语法 replace()方法语法: st...

在python3.5中使用OpenCV的实例讲解

在python3.5中使用OpenCV的实例讲解

最近在OpenCV的官方文档上看到一个人脸识别的示例代码,想要实现。由于我之前下好的OpenCV3.1中并不自带相关的函数,即opencv2/contrib/contrib.hpp这个文...

python对字典进行排序实例

本文实例讲述了python对字典进行排序的方法,是非常实用的技巧。分享给大家供大家参考。 具体实现方法如下: import itertools thekeys = ['b','a'...

python实现切割url得到域名、协议、主机名等各个字段的例子

有一个需求就是需要对url进行进一步的划分得到详细的各个字段信息,下面是简单的实现: #!/usr/bin/python # -*- coding: UTF-8 -*- ''' __...