基于python及pytorch中乘法的使用详解

yipeiwu_com6年前Python基础

numpy中的乘法

A = np.array([[1, 2, 3], [2, 3, 4]])
B = np.array([[1, 0, 1], [2, 1, -1]])
C = np.array([[1, 0], [0, 1], [-1, 0]])
 
A * B : # 对应位置相乘
np.array([[ 1, 0, 3], [ 4, 3, -4]]) 
 
A.dot(B) :  # 矩阵乘法 
ValueError: shapes (2,3) and (2,3) not aligned: 3 (dim 1) != 2 (dim 0)
 
A.dot(C) : # 矩阵乘法  | < -- > np.dot(A, C)
np.array([[-2, 2],[-2, 3]])

总结 : 在numpy中,*表示为两个数组对应位置相乘; dot表示两个数组进行矩阵乘法

pytorch中的乘法

A = torch.tensor([[1, 2, 3], [2, 3, 4]])
B = torch.tensor([[1, 0, 1], [2, 1, -1]])
C = torch.tensor([[1, 0], [0, 1], [-1, 0]])
 
# 矩阵乘法
torch.mm(mat1, mat2, out=None) <--> torch.matmul(mat1, mat2, out=None)
eg : 
  torch.mm(A, B)   : RuntimeError: size mismatch, m1: [2 x 3], m2: [2 x 3]
  torch.mm(A, C)   : tensor([[-2, 2], [-2, 3]])
  torch.matmul(A, C) : tensor([[-2, 2], [-2, 3]])
 
# 点乘
torch.mul(mat1, mat2, out=None)
 
eg :
  torch.mul(A, B) : tensor([[ 1, 0, 3], [ 4, 3, -4]])
  torch.mul(A, C) : RuntimeError: The size of tensor a (3) must match the size of tensor b (2) at non-singleton dimension 1

总结 : 在pytorch中,mul表示为两个数组对应位置相乘; mm和matmul表示两个数组进行矩阵乘法

以上这篇基于python及pytorch中乘法的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python基于celery实现异步任务周期任务定时任务

python基于celery实现异步任务周期任务定时任务

这篇文章主要介绍了python基于celery实现异步任务周期任务定时任务,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 hello,...

Python中将dataframe转换为字典的实例

有时候,在Python中需要将dataframe类型转换为字典类型,下面的方法帮助我们解决这一问题。 任务代码。 # encoding: utf-8 import pandas a...

linecache模块加载和缓存文件内容详解

linecache模块 接触到linecache这个模块是因为前两天读attrs源码的时候看到内部代码引用了这个模块来模拟一个假文件,带着一脸疑问顺便读了一下这个模块的源码,发现其实也就...

使用python解析xml成对应的html示例分享

SAX将dd.xml解析成html。当然啦,如果得到了xml对应的xsl文件可以直接用libxml2将其转换成html。 复制代码 代码如下:#!/usr/bin/env python...

python字符串中匹配数字的正则表达式

Python 正则表达式简介 正则表达式是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配。 Python 自1.5版本起增加了re 模块,它提供 Perl 风格...