pytorch获取模型某一层参数名及参数值方式

yipeiwu_com6年前Python基础

1、Motivation:

I wanna modify the value of some param;

I wanna check the value of some param.

The needed function:

2、state_dict() #generator type

model.modules()#generator type

named_parameters()#OrderDict type

from torch import nn
import torch
#creat a simple model
model = nn.Sequential(
  nn.Conv3d(1,16,kernel_size=1),
  nn.Conv3d(16,2,kernel_size=1))#tend to print the W of this layer
input = torch.randn([1,1,16,256,256])
if torch.cuda.is_available():
  print('cuda is avaliable')
  model.cuda()
  input = input.cuda()
#打印某一层的参数名
for name in model.state_dict():
  print(name)
#Then I konw that the name of target layer is '1.weight'

#schemem1(recommended)
print(model.state_dict()['1.weight'])

#scheme2
params = list(model.named_parameters())#get the index by debuging
print(params[2][0])#name
print(params[2][1].data)#data

#scheme3
params = {}#change the tpye of 'generator' into dict
for name,param in model.named_parameters():
params[name] = param.detach().cpu().numpy()
print(params['0.weight'])

#scheme4
for layer in model.modules():
if(isinstance(layer,nn.Conv3d)):
  print(layer.weight)

#打印每一层的参数名和参数值
#schemem1(recommended)
for name,param in model.named_parameters():
  print(name,param)

#scheme2
for name in model.state_dict():
  print(name)
  print(model.state_dict()[name])

以上这篇pytorch获取模型某一层参数名及参数值方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

对pandas数据判断是否为NaN值的方法详解

实际项目中有这样的需求,将某一列的值,映射成类别型的数据,这个时候,需要我们将范围等频切分,或者等距切分。 具体的做法可以先看某一些特征的具体分布情况,然后我们选择合适的阈值进行分割。...

Python实现的KMeans聚类算法实例分析

Python实现的KMeans聚类算法实例分析

本文实例讲述了Python实现的KMeans聚类算法。分享给大家供大家参考,具体如下: 菜鸟一枚,编程初学者,最近想使用Python3实现几个简单的机器学习分析方法,记录一下自己的学习过...

python3实现斐波那契数列(4种方法)

基础版(list方法) # 比较占内存 w = int(input("输入一个数字还你一个斐波那契数列:")) list_res = [] def list_n(n): if...

Python中的map()函数和reduce()函数的用法

Python中的map()函数和reduce()函数的用法

Python内建了map()和reduce()函数。 如果你读过Google的那篇大名鼎鼎的论文“MapReduce: Simplified Data Processing on Lar...

Python初学时购物车程序练习实例(推荐)

废话不多说,直接上代码 #Author:Lancy Wu product_list=[ ('Iphone',5800), ('Mac Pro',9800), ('Bike',...