pytorch获取模型某一层参数名及参数值方式

yipeiwu_com6年前Python基础

1、Motivation:

I wanna modify the value of some param;

I wanna check the value of some param.

The needed function:

2、state_dict() #generator type

model.modules()#generator type

named_parameters()#OrderDict type

from torch import nn
import torch
#creat a simple model
model = nn.Sequential(
  nn.Conv3d(1,16,kernel_size=1),
  nn.Conv3d(16,2,kernel_size=1))#tend to print the W of this layer
input = torch.randn([1,1,16,256,256])
if torch.cuda.is_available():
  print('cuda is avaliable')
  model.cuda()
  input = input.cuda()
#打印某一层的参数名
for name in model.state_dict():
  print(name)
#Then I konw that the name of target layer is '1.weight'

#schemem1(recommended)
print(model.state_dict()['1.weight'])

#scheme2
params = list(model.named_parameters())#get the index by debuging
print(params[2][0])#name
print(params[2][1].data)#data

#scheme3
params = {}#change the tpye of 'generator' into dict
for name,param in model.named_parameters():
params[name] = param.detach().cpu().numpy()
print(params['0.weight'])

#scheme4
for layer in model.modules():
if(isinstance(layer,nn.Conv3d)):
  print(layer.weight)

#打印每一层的参数名和参数值
#schemem1(recommended)
for name,param in model.named_parameters():
  print(name,param)

#scheme2
for name in model.state_dict():
  print(name)
  print(model.state_dict()[name])

以上这篇pytorch获取模型某一层参数名及参数值方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

tensorflow 只恢复部分模型参数的实例

我就废话不多说了,直接上代码吧! import tensorflow as tf def model_1(): with tf.variable_scope("var_a"):...

Tensorflow环境搭建的方法步骤

Tensorflow环境搭建的方法步骤

What? 我们需要通过VMware虚拟机平台+Ubuntu虚拟机+安装pip的方式来搭建TensorFlow的环境。 官网参考文档地址:https://www.tensorflow.o...

pytorch-RNN进行回归曲线预测方式

pytorch-RNN进行回归曲线预测方式

任务 通过输入的sin曲线与预测出对应的cos曲线 #初始加载包 和定义参数 import torch from torch import nn import numpy as np...

Python编译为二进制so可执行文件实例

通过cpython把python的文件转换为二进制文件,达到代码保护的目的 1、下载Cython-0.28.2.tar.gz python setup.py install安装 2、创...

深入学习python多线程与GIL

python 多线程效率 在一台8核的CentOS上,用python 2.7.6程序执行一段CPU密集型的程序。 import time def fun(n):#CPU密集型的程序...