pytorch 归一化与反归一化实例

yipeiwu_com6年前Python基础

ToTensor中就有转到0-1之间了。

# -*- coding:utf-8 -*-
 
 
import time
 
import torch
 
from torchvision import transforms
 
import cv2
 
transform_val_list = [
  # transforms.Resize(size=(160, 160), interpolation=3), # Image.BICUBIC
  transforms.ToTensor(),
  transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
 
trans_compose = transforms.Compose(transform_val_list)
 
 
 
if __name__ == '__main__':
  std= [0.229, 0.224, 0.225]
  mean=[0.485, 0.456, 0.406]
  path="d:/2.jpg"
 
  data=cv2.imread(path)
  t1 = time.time()
  x = trans_compose(data)
  x[0]=x[0]*std[0]+mean[0]
  x[1]=x[1]*std[1]+mean[1]
  x[2]=x[2].mul(std[2])+mean[2]
 
  img = x.mul(255).byte()
  img = img.numpy().transpose((1, 2, 0))
  # torch.set_num_threads(3)
  # img=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
  cv2.imshow("sdf", img)
  cv2.waitKeyEx()
  

这个测试时间:归一化与反归一化都需要7ms左右,

但是在多路摄像头中,可能比较慢。

 std= [0.229, 0.224, 0.225]
  mean=[0.485, 0.456, 0.406]
  path="d:/2.jpg"
 
  data=cv2.imread(path)
  t1 = time.time()
  start = time.time()
  x = trans_compose(data)
  print("gui", time.time() - start)
  for i in range(10):
    start=time.time()
 
    for i in range(len(mean)):
      # x[i]=x[i]*std[i]+mean[i]
      x[i]=x[i].mul(std[i])+mean[i]
    img = x.mul(255).byte()
    img = img.numpy().transpose((1, 2, 0))
 
    print("fan",time.time()-start)
  # torch.set_num_threads(3)
  # img=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
  cv2.imshow("sdf", img)
  cv2.waitKeyEx()

以上这篇pytorch 归一化与反归一化实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

浅谈python 里面的单下划线与双下划线的区别

在学习Python的时候,很多人都不理解为什么在方法(method)前面会加好几个下划线,有时甚至两边都会加,比如像 __this__ 这种。在我看到上面的文章之前,我一直以为Pytho...

浅谈python日志的配置文件路径问题

如下所示: import logging import logging.config logging.config.fileConfig(path) logger = logging...

一行Python代码过滤标点符号等特殊字符

很多时候我们需要过滤掉标点符号等特殊字符,网上虽然有一堆的方法,但是都没有找到一个非常满意的,有些过滤不了中文的标点符号,有些过滤不了英文的标点符号,有些过滤不全。 最后通过查看正则表达...

浅谈dataframe中更改列属性的方法

在读取文件时将整数变量读成了字符串, 或者需要转换列属性时,通过方法astype Python中 举例: dataframe.numbers=dataframe.numbers.as...

Pytorch训练过程出现nan的解决方式

Pytorch训练过程出现nan的解决方式

今天使用shuffleNetV2+,使用自己的数据集,遇到了loss是nan的情况,而且top1精确率出现断崖式上升,这显示是不正常的。 在网上查了下解决方案。我的问题是出在学习率上了...