pytorch中交叉熵损失(nn.CrossEntropyLoss())的计算过程详解

yipeiwu_com6年前Python基础

公式

首先需要了解CrossEntropyLoss的计算过程,交叉熵的函数是这样的:

其中,其中yi表示真实的分类结果。这里只给出公式,关于CrossEntropyLoss的其他详细细节请参照其他博文。

测试代码(一维)

import torch
import torch.nn as nn
import math

criterion = nn.CrossEntropyLoss()
output = torch.randn(1, 5, requires_grad=True)
label = torch.empty(1, dtype=torch.long).random_(5)
loss = criterion(output, label)

print("网络输出为5类:")
print(output)
print("要计算label的类别:")
print(label)
print("计算loss的结果:")
print(loss)

first = 0
for i in range(1):
  first = -output[i][label[i]]
second = 0
for i in range(1):
  for j in range(5):
    second += math.exp(output[i][j])
res = 0
res = (first + math.log(second))
print("自己的计算结果:")
print(res)

测试代码(多维)

import torch
import torch.nn as nn
import math
criterion = nn.CrossEntropyLoss()
output = torch.randn(3, 5, requires_grad=True)
label = torch.empty(3, dtype=torch.long).random_(5)
loss = criterion(output, label)

print("网络输出为3个5类:")
print(output)
print("要计算loss的类别:")
print(label)
print("计算loss的结果:")
print(loss)

first = [0, 0, 0]
for i in range(3):
  first[i] = -output[i][label[i]]
second = [0, 0, 0]
for i in range(3):
  for j in range(5):
    second[i] += math.exp(output[i][j])
res = 0
for i in range(3):
  res += (first[i] + math.log(second[i]))
print("自己的计算结果:")
print(res/3)

nn.CrossEntropyLoss()中的计算方法

注意:在计算CrossEntropyLosss时,真实的label(一个标量)被处理成onehot编码的形式。

在pytorch中,CrossEntropyLoss计算公式为:

CrossEntropyLoss带权重的计算公式为(默认weight=None):

以上这篇pytorch中交叉熵损失(nn.CrossEntropyLoss())的计算过程详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Pycharm中Python环境配置常见问题解析

Pycharm中Python环境配置常见问题解析

本文实例讲述了Pycharm中Python环境配置常见问题。分享给大家供大家参考,具体如下: 1、问题的发现 最近在用Pycharm下的命令行工具安装、运行jupyter noteboo...

推荐下python/ironpython:从入门到精通

最近无聊,下了个visual studio 2005的furture,发现里面多了对动态语言的支持.其实很早就想摆弄下python,正好是个机会.一开始是想学ironpython,但后来...

Python调用命令行进度条的方法

本文实例讲述了Python调用命令行进度条的方法。分享给大家供大家参考。具体分析如下: 关键点是输出'\r'这个字符可以使光标回到一行的开头,这时输出其它内容就会将原内容覆盖。 im...

基于Python获取照片的GPS位置信息

基于Python获取照片的GPS位置信息

这篇文章主要介绍了基于Python获取照片的GPS位置信息,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 昨天听人说,用手机拍照会带着...

python3+PyQt5泛型委托详解

python3+PyQt5泛型委托详解

自定义委托可以让我们对视图中出现的数据项的外观和行为进行完全控制。如果有很多模型,可能会希望不是全部的大多数模型能够仅用一个自定义委托,如果不能这么做,那么对于这些自定义委托,将很有可能...