python 实现从高分辨图像上抠取图像块

yipeiwu_com6年前Python基础

我就废话不多说了,直接上代码吧!

#coding=utf-8
import cv2
import numpy as np
import os
# 程序实现功能:
# 根据patch在高分辨率图像上的索引值,crop出对应区域的图像
# 并验证程序的正确性
'''
对于当前输入的3328*3328的高分辨率特征图,首先resize到640*640
然后根据当前的patch文件名(包含了patch在高分辨率图像上的行索引和列索引)
这个索引值是将高分辨率图像划分成多个没有overlap的256*256的图像块之后的行索引和列索引
行索引range(1,11),列索引range(0,12)
3328=13*256
'''

index='IDRiD_03_3_12.jpg'
raw_img_path='F:\\2\\eye_seg_con\\eye_seg\\joint_data\\raw_image\\train'
patches_path='F:\\2\\eye_seg_con\\eye_seg\\joint_data\\patches\\train'
true_patches=cv2.imread(os.path.join(patches_path,index))[:,:,::-1]

print(os.path.join(raw_img_path,index.split('_')[0]+index.split('_')[1]+'.jpg'))

hr_img=cv2.imread(os.path.join(raw_img_path,index.split('_')[0]+'_'+index.split('_')[1]+'.jpg'))[:,:,::-1]
hr_img=cv2.resize(hr_img,(640,640))# hr_img RGB

'''
640/13=49.23076923076923 记作unit
将640*640的区域平均划分成13*13份,每一份的像素点大小是unit*unit
然后将对应位置(取整)的图像块抠出来,resize成256*256大小
'''
unit=640/13
patch_row_num = int(index[:-4].split('_')[2])
patch_col_num = int(index[:-4].split('_')[3])

row_start=round(patch_row_num*unit)
row_end=round((patch_row_num+1)*unit)
col_start=round(patch_col_num*unit)
col_end=round((patch_col_num+1)*unit)

my_patch=hr_img[row_start:row_end,col_start:col_end,:]
my_patch=cv2.resize(my_patch,(256,256))
my_patch=np.array(my_patch,dtype=np.uint8)

cv2.imshow('true_patches',true_patches[:,:,::-1])
cv2.waitKey(0)

cv2.imshow('my_patch',my_patch[:,:,::-1])
cv2.waitKey(0)

# # hr_img RGB
#
# # cv2.imshow('1',hr_img[:,:,::-1])
# # cv2.waitKey(0)
#
# hr_img2=cv2.imread(os.path.join(raw_img_path,index.split('_')[0]+'_'+index.split('_')[1]+'.jpg'))
# hr_img2=cv2.resize(hr_img2,(640,640))[:,:,::-1]# hr_img2 RGB
# # cv2.imshow('2',hr_img2[:,:,::-1])
# # cv2.waitKey(0)
#
# print(np.sum(hr_img2-hr_img))# 0

# 结论:
# 对于cv2.resize函数而言,无论是先进行BGR的通道转换,再resize,还是先进行resize,再进行BGR通道转换
# 所得到的图像是相同的,即resize和通道维度的变换可交换顺序
# 实际上resize只发生在spatial dimension,而通道变换发生在channels dimension,所以空间维度上的插值变换
# 是在每个通道维度上独立进行的。
# 另外,对于计算机而言,所读取到的彩色图像就是H*W*3的矩阵而已,它本身是没有办法区分究竟是BGR格式还是RGB格式的

以上这篇python 实现从高分辨图像上抠取图像块就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现名片管理系统项目

python实现名片管理系统项目

名片管理系统,供大家参考,具体内容如下 环境要求:linux系统、python2.x或python3.x 资源地址:GitHub地址 写在前面的话:笔者之前在初学C/C++时,都曾写过类...

python框架django项目部署相关知识详解

python框架django项目部署相关知识详解

这篇文章主要介绍了python框架django项目部署相关知识详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一:项目部署的框架...

python tornado修改log输出方式

sed -i 's/StreamHandler()/StreamHandler(sys.__stdout__)/' /opt/python/python3/lib/python3.6/s...

对Python生成汉字字库文字,以及转换为文字图片的实例详解

对Python生成汉字字库文字,以及转换为文字图片的实例详解

笔者小白在收集印刷体汉字的深度学习训练集的时候,一开始就遇到的了一个十分棘手的问题,就是如何获取神经网络的训练集数据。通过上网搜素,笔者没有找到可用的现成的可下载的汉字的训练集,于是笔者...

python 垃圾收集机制的实例详解

 python 垃圾收集机制的实例详解 pythonn垃圾收集方面的内容如果要细讲还是挺多的,这里只是做一个大概的概括 Python最主要和绝大多数时候用的都是引用计数,每一个...