pytorch torch.nn.AdaptiveAvgPool2d()自适应平均池化函数详解

yipeiwu_com6年前Python基础

如题:只需要给定输出特征图的大小就好,其中通道数前后不发生变化。具体如下:

AdaptiveAvgPool2d

CLASStorch.nn.AdaptiveAvgPool2d(output_size)[SOURCE]

Applies a 2D adaptive average pooling over an input signal composed of several input planes.

The output is of size H x W, for any input size. The number of output features is equal to the number of input planes.

Parameters

output_size – the target output size of the image of the form H x W. Can be a tuple (H, W) or a single H for a square image H x H. H and W can be either a int, or None which means the size will be the same as that of the input.

Examples

>>> # target output size of 5x7
>>> m = nn.AdaptiveAvgPool2d((5,7))
>>> input = torch.randn(1, 64, 8, 9)
>>> output = m(input)
>>> # target output size of 7x7 (square)
>>> m = nn.AdaptiveAvgPool2d(7)
>>> input = torch.randn(1, 64, 10, 9)
>>> output = m(input)
>>> # target output size of 10x7
>>> m = nn.AdaptiveMaxPool2d((None, 7))
>>> input = torch.randn(1, 64, 10, 9)
>>> output = m(input)
>>> input = torch.randn(1, 3, 3, 3)
>>> input
tensor([[[[ 0.6574, 1.5219, -1.3590],
   [-0.1561, 2.7337, -1.8701],
   [-0.8572, 1.0238, -1.9784]],
 
   [[ 0.4284, 1.4862, 0.3352],
   [-0.7796, -0.8020, -0.1243],
   [-1.2461, -1.7069, 0.1517]],
 
   [[ 1.4593, -0.1287, 0.5369],
   [ 0.6562, 0.0616, 0.2611],
   [-1.0301, 0.4097, -1.9269]]]])
>>> m = nn.AdaptiveAvgPool2d((2, 2))
>>> output = m(input)
>>> output
tensor([[[[ 1.1892, 0.2566],
   [ 0.6860, -0.0227]],
 
   [[ 0.0833, 0.2238],
   [-1.1337, -0.6204]],
 
   [[ 0.5121, 0.1827],
   [ 0.0243, -0.2986]]]])
>>> 0.6574+1.5219+2.7337-0.1561
4.7569
>>> 4.7569/4
1.189225
>>> 

以上这篇pytorch torch.nn.AdaptiveAvgPool2d()自适应平均池化函数详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python3.6+Django2.0以上 xadmin站点的配置和使用教程图解

Python3.6+Django2.0以上 xadmin站点的配置和使用教程图解

1. xadmin的介绍 django自带的admin站点虽然功能强大,但是界面不是很好看。而xadmin界面好看,功能更强大,并完全支持Bootstrap主题模板。xadmin内置了丰...

如何使用python3获取当前路径及os.path.dirname的使用

这篇文章主要介绍了如何使用python3获取当前路径及os.path.dirname的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考...

python文本数据相似度的度量

编辑距离 编辑距离,又称为Levenshtein距离,是用于计算一个字符串转换为另一个字符串时,插入、删除和替换的次数。例如,将'dad'转换为'bad'需要一次替换操作,编辑距离为1。...

matplotlib给子图添加图例的方法

matplotlib给子图添加图例的方法

代码如下: import matplotlib.pyplot as plt x = [1,2,3,4,5,6,7,8] y = [5,2,4,2,1,4,5,2] axe1 = p...

Python常用的日期时间处理方法示例

#-*- coding: utf-8 -*- import datetime #给定日期向后N天的日期 def dateadd_day(days): d1 = datetim...