pytorch 改变tensor尺寸的实现

yipeiwu_com6年前Python基础

改变Tensor尺寸的操作

1.tensor.view

tensor.view方法,可以调整tensor的形状,但必须保证调整前后元素总数一致。view不会改变自身数据,返回的新的tensor与源tensor共享内存,即更改其中一个,另外一个也会跟着改变。

例:

In: import torch as t
   a = t.arange(0, 6)
   a.view(2, 3)
Out:tensor([[0, 1, 2],
    [3, 4, 5]])

In: b = a.view(-1, 3)#当某一维为-1的时候,会自动计算它的大小
Out:tensor([[0, 1, 2],
    [3, 4, 5]])

2.tensor.unsqueeze 和 tensor.squeeze

tensor.unsqueeze 和 tensor.squeeze分别用于增加或减少tensor的某一维度。

例:

In: b.unsqueeze(1)#注意形状, 在第1维(下标从0开始)上增加“1”
Out:tensor([[[0, 1, 2]],
    [[3, 4, 5]]])
    
In: b.unsqueeze(-2) #-2表示倒数第二个维度
Out:tensor([[[0, 1, 2]],
    [[3, 4, 5]]])
    
In: c = b.view(1, 1, 1, 2, 3)
   c.unsqueeze(0)#压缩第0维的“1”
Out:tensor([[[[[[0, 1, 2],
      [3, 4, 5]]]]]])
      
In: c.squeeze() #把所有维度为“1”的压缩
Out:tensor([[0, 1, 2],
    [3, 4, 5]])
    
In:a[1] = 100
  b #a和b共享内存,修改了a,b也变了
Out:tensor([[ 0, 100,  2],
    [ 3,  4,  5]])

3.tensor.resize

tensor.resize是另外一种可以调整tensor尺寸的方法,但与view不同,它可以修改tensor的尺寸。如果新尺寸超过了原尺寸,会自动分配新的内存空间;如果新尺寸小于原尺寸,则之前的数据依旧会保存

例:

In: b.resize_(1, 3)
Out:tensor([[ 0, 100,  2]])

In: b.resize_(3, 3)#旧的数据依旧保存着,多出的数据会分配新空间
Out:tensor([[         0,         100,          2],
    [         3,          4,          5],
    [         0,          0, 2323344073926471279]])

以上这篇pytorch 改变tensor尺寸的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python中的单引号双引号区别知识点总结

python中的单引号双引号有什么区别呢?下面给大家详细的介绍一下: 先说双引号与三引号的区别,双引号所表示的字符串通常要写成一行。 如: s1 = "hello,world" 如...

Python 根据数据模板创建shapefile的实现

废话不多说,我就直接上代码让大家看看吧! #!/usr/bin/env python # -*- coding: utf-8 -*- # @File : copyShapefile....

python实现简易动态时钟

本文实例为大家分享了python实现简易动态时钟的具体代码,供大家参考,具体内容如下 from turtle import * from datetime import * #移动到...

详解python3安装pillow后报错没有pillow模块以及没有PIL模块问题解决

详解python3安装pillow后报错没有pillow模块以及没有PIL模块问题解决

也许自己真的就是有手残的毛病,你说好端端的环境配置好了,自己还在那里瞎鼓捣,我最不想看到的就是在安装一个别的模块的时候,自动卸载了本地的其他模块,每每这个时候,满满的崩溃啊,今天就是一个...

Python上下文管理器用法及实例解析

这篇文章主要介绍了Python上下文管理器用法及实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 with上下文管理器 语法:...