Tensorflow的常用矩阵生成方式

yipeiwu_com6年前Python基础

我就废话不多说了,直接上代码吧!

#全0和全1矩阵

v1 = tf.Variable(tf.zeros([3,3,3]), name="v1") 

v2 = tf.Variable(tf.ones([10,5]), name="v2") 
 
#填充单值矩阵 
v3 = tf.Variable(tf.fill([2,3], 9)) 

 
#常量矩阵 
v4_1 = tf.constant([1, 2, 3, 4, 5, 6, 7]) 
v4_2 = tf.constant(-1.0, shape=[2, 3]) 


# 和v4_1形状一样的全1或全0矩阵

v5_1=tf.ones_like(v4_1)

v5_2=tf.zeros_like(v4_1) 


#生成等差数列 
v6_1 = tf.linspace(10.0, 12.0, 30, name="linspace")#float32 or float64 
v7_1 = tf.range(10, 20, 3)#just int32 
 
#生成各种随机数据矩阵 

#平均分布

v8_1 = tf.Variable(tf.random_uniform([2,4], minval=0.0, maxval=2.0, dtype=tf.float32, seed=1234, name="v8_1")) 
#正态分布

v8_2 = tf.Variable(tf.random_normal([2,3], mean=0.0, stddev=1.0, dtype=tf.float32, seed=1234, name="v8_2")) 

#正态分布,但是去掉2sigma外的数字

v8_3 = tf.Variable(tf.truncated_normal([2,3], mean=0.0, stddev=1.0, dtype=tf.float32, seed=1234, name="v8_3")) 

#把这3个行重排列
v8_5 = tf.random_shuffle([[1,2,3],[4,5,6],[6,6,6]], seed=134, name="v8_5") 

以上都是计算图中的变量,需要sess.run()以后才能成为真正的数据

存取方式是:

np.save("v1.npy",sess.run(v1))#numpy save v1 as file 
test_a = np.load("v1.npy") 
print test_a[1,2] 

这篇Tensorflow的常用矩阵生成方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

使用Python操作FTP实现上传和下载的方法

搭建ftp服务器server端 # -*- coding:utf-8 -*- from pyftpdlib.authorizers import DummyAuthorizer fr...

PyTorch搭建多项式回归模型(三)

PyTorch搭建多项式回归模型(三)

PyTorch基础入门三:PyTorch搭建多项式回归模型  1)理论简介 对于一般的线性回归模型,由于该函数拟合出来的是一条直线,所以精度欠佳,我们可以考虑多项式回归来拟合更...

python2与python3共存问题的解决方法

python现在主要使用的有2个版本:2.x和3.x,而这2个版本的语法却有很多的不同,python3.x并不是向下兼容2.x的。虽然说3.x是未来python的主流,但是很多工具和个人...

python中正则表达式的使用详解

python中正则表达式的使用详解

从学习Python至今,发现很多时候是将Python作为一种工具。特别在文本处理方面,使用起来更是游刃有余。 说到文本处理,那么正则表达式必然是一个绝好的工具,它能将一些繁杂的字符搜索或...

将python文件打包成EXE应用程序的方法

将python文件打包成EXE应用程序的方法

相信大家都想把自己完成的项目打包成EXE应用文件,然后就可以放在桌面随时都能运行了,下面来分享利用pytinstaller这个第三方库来打包程序,既简单又快捷,我也试过用其他的方式来打包...