基于TensorFlow常量、序列以及随机值生成实例

yipeiwu_com6年前Python基础

TensorFlow 生成 常量、序列和随机值

生成常量

tf.constant()这种形式比较常见,除了这一种生成常量的方式之外,像Numpy一样,TensorFlow也提供了生成集中特殊的常量的函数:

tf.zeros(shape, dtype=tf.float32, name=None)

三个参数的意思显而易见,返回指定形状的全零张量

tf.zeros_like(tensor, dtype=None, name=None, optimizer=True) 与函数的名字一致,传入一个张量,最后返回一个张量,与传入的张量拥有一样的形状和数据类型,也可以自己传入dtype指定数据类型

tf.ones() 和tf.ones_like()与之前的函数对应一致

tf.fill(shape, value, name=None) 返回填满指定输入的数值的张量,例如:

tf.fill([2,3],9)

返回的张量就是:

[[9 9 9]
 [9 9 9]]

生成序列

tf.linspace(start, stop, num, name=None)

函数名称与Numpy中序列的函数一样,只是参数部分进行了简化,前两个参数分别指定了开始和结束的值,num指定了要生成的数量,最后则是名称,例如:

a = tf.linspace(1.0, 10.0, 10, name='lin1')

输出:

[ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]
tf.range(start, limit, delta, dtype=None, name=None)

例如:

a = tf.range(1, 5, 1)

输出:

[1 2 3 4]

随机张量

随机值在TensorFlow中很重要,很多情况下的初始值往往会随机值,常用的随机值生成函数如下:

生成均匀分布的随机张量

# 调用格式
random_uniform(
  shape,
  minval=0,
  maxval=None,  # 最大值以及最小值
  dtype=tf.float32,
  seed=None,   # 指定种子
  name=None
)
# 例如
a = tf.random_uniform([2,3], minval=1.0, maxval=5.0, dtype=tf.float32)
# 输出
[[4.458698 4.091486 4.3704953]
 [3.893827 2.7951822 2.2381153]]

生成服从正态分布的随机张量

# 调用格式
random_normal(
  shape,
  mean=0.0,   # 均值
  stddev=1.0,  # 标准差
  dtype=tf.float32,
  seed=None,
  name=None
)
a = tf.random_normal([2,3], mean=3.0, stddev=1.0, dtype=tf.float32)
[[3.65199  1.879906 2.1775374]
 [1.6041888 1.503772 2.704612 ]]

生成服从截断正态分布的随机张量

# 调用格式
tf.truncated_normal(
  shape,
  mean=0.0,
  stddev=1.0,
  dtype=tf.float32,
  seed=None,
  name=None
)

[[4.477414 2.9767075 2.377511 ]
 [2.7083392 4.2639837 2.497882 ]]

这个函数与正态分布的函数使用时一样的,只是增加了 “截断” 也就是限制每个元素的取值,如果其平均值大于 2 个标准差的值将被丢弃并重新选择 。

以上这篇基于TensorFlow常量、序列以及随机值生成实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Windows下python3安装tkinter的问题及解决方法

最近尝试写python GUI界面,决定先从tkinter开始。 但是遇到了无法安装。执行pip install tkinter没有用,报了如下错误: C:\Users\zhengji...

django创建自定义模板处理器的实例详解

django创建自定义模板处理器: 一、需求来源: 在django开发中,页面是通过template(模板)进行渲染的,对于一些数据,可以通过{{ 变量 }}的方式进行传递。但是,如果整...

flask中过滤器的使用详解

过滤器 过滤器的本质就是函数。有时候我们不仅仅只是需要输出变量的值,我们还需要修改变量的显示,甚至格式化、运算等等,而在模板中是不能直接调用 Python 中的某些方法,那么这就用到了...

Python 读取指定文件夹下的所有图像方法

Python 读取指定文件夹下的所有图像方法

(1)数据准备 数据集介绍: 数据集中存放的是1223幅图像,其中756个负样本(图像名称为0.1~0.756),458个正样本(图像名称为1.1~1.458),其中:"."前的标号为样...

浅述python中深浅拷贝原理

前言 在c++中参数传递有两种形式:值传递和引用传递。这两种方式的区别我不在此说,自行补上,如果你不知道的话。我先上python代码,看完我们总结一下,代码如下: # copy m...