Tensorflow 自定义loss的情况下初始化部分变量方式

yipeiwu_com6年前Python基础

一般情况下,tensorflow里面变量初始化过程为:

  #variables ...........
  #..................... 
  init = tf.initialize_all_variables()
  sess.run(init)

这里 tf.initialize_all_variables() 会初始化所有的变量。

实际过程中,假设有a, b, c三个变量,其中a已经被初始化了,只想单独初始化b,c,那么:

  #variables ...
  ...
  init = tf.variables_initializer([b,c])
  sess.run(init)

此外,如果自行修改了optimizer,如下代码就会报错:

  #definition of variables a, b, c ...
  ....
  my_optimizer = tf.train.RMSProp(learning_rate = 0.1).minimize(my_cost)
  init = tf.variables_initializer([b,c])
  sess.run(init)

这是因为自己定义的optimizer会生成新的variables,但是在init里面并没有初始化,所以无法访问,会报错。解决方法如下:

  a = tf.Variables(...)      #line N
  temp = set(tf.all_variables()) 
  b = tf.Variables(...)
  c = tf.Variables(...) 
  #definition of my optimizer
  optimizer = tf.train.......
  init = tf.variables_initializer(set(tf.all_varialbles())-temp) # line M
  sess.run(init)

首先,temp = set(tf.all_variables()) 将该行(line N)代码之前的所有变量保存在temp中,接下来定义变量b, c,以及自定义的optimizer,然后 set(tf.all_varialbles()存储了改行(line M)之前的所有变量(包括optimizer生成的变量以及temp中所含的变量),set(tf.all_varialbles())-temp相减得到line N~M这几行定义的变量。

以上这篇Tensorflow 自定义loss的情况下初始化部分变量方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

在vscode中配置python环境过程解析

在vscode中配置python环境过程解析

1.安装vscode和python3.7(安装路径在:E:\Python\Python37); 2.打开vscode,在左下角点击设置图标选择setting,搜索python path,...

Python实现简单过滤文本段的方法

本文实例讲述了Python实现简单过滤文本段的方法。分享给大家供大家参考,具体如下: 一、问题: 如下文本: ## Alignment 0: score=397.0 e_value=...

pandas groupby 分组取每组的前几行记录方法

直接上例子。 import pandas as pd df = pd.DataFrame({'class':['a','a','b','b','a','a','b','c','c'...

Python 私有化操作实例分析

Python 私有化操作实例分析

本文实例讲述了Python 私有化操作。分享给大家供大家参考,具体如下: 私有化 xx: 公有变量 _x: 单前置下划线,私有化属性或方法,from somemodule import...

利用Python绘制有趣的万圣节南瓜怪效果

利用Python绘制有趣的万圣节南瓜怪效果

关于万圣节 万圣节又叫诸圣节,在每年的11月1日,是西方的传统节日;而万圣节前夜的10月31日是这个节日最热闹的时刻。在中文里,常常把万圣节前夜(Halloween)讹译为万圣节(All...