pytorch动态网络以及权重共享实例

yipeiwu_com6年前Python基础

pytorch 动态网络+权值共享

pytorch以动态图著称,下面以一个栗子来实现动态网络和权值共享技术:

# -*- coding: utf-8 -*-
import random
import torch


class DynamicNet(torch.nn.Module):
  def __init__(self, D_in, H, D_out):
    """
    这里构造了几个向前传播过程中用到的线性函数
    """
    super(DynamicNet, self).__init__()
    self.input_linear = torch.nn.Linear(D_in, H)
    self.middle_linear = torch.nn.Linear(H, H)
    self.output_linear = torch.nn.Linear(H, D_out)

  def forward(self, x):
    """
    For the forward pass of the model, we randomly choose either 0, 1, 2, or 3
    and reuse the middle_linear Module that many times to compute hidden layer
    representations.

    Since each forward pass builds a dynamic computation graph, we can use normal
    Python control-flow operators like loops or conditional statements when
    defining the forward pass of the model.

    Here we also see that it is perfectly safe to reuse the same Module many
    times when defining a computational graph. This is a big improvement from Lua
    Torch, where each Module could be used only once.
    这里中间层每次向前过程中都是随机添加0-3层,而且中间层都是使用的同一个线性层,这样计算时,权值也是用的同一个。
    """
    h_relu = self.input_linear(x).clamp(min=0)
    for _ in range(random.randint(0, 3)):
      h_relu = self.middle_linear(h_relu).clamp(min=0)
    y_pred = self.output_linear(h_relu)
    return y_pred


    # N is batch size; D_in is input dimension;
    # H is hidden dimension; D_out is output dimension.
    N, D_in, H, D_out = 64, 1000, 100, 10

    # Create random Tensors to hold inputs and outputs
    x = torch.randn(N, D_in)
    y = torch.randn(N, D_out)

    # Construct our model by instantiating the class defined above
    model = DynamicNet(D_in, H, D_out)

    # Construct our loss function and an Optimizer. Training this strange model with
    # vanilla stochastic gradient descent is tough, so we use momentum
    criterion = torch.nn.MSELoss(reduction='sum')
    optimizer = torch.optim.SGD(model.parameters(), lr=1e-4, momentum=0.9)
    for t in range(500):
      # Forward pass: Compute predicted y by passing x to the model
      y_pred = model(x)

      # Compute and print loss
      loss = criterion(y_pred, y)
      print(t, loss.item())

      # Zero gradients, perform a backward pass, and update the weights.
      optimizer.zero_grad()
      loss.backward()
      optimizer.step()

这个程序实际上是一种RNN结构,在执行过程中动态的构建计算图

References: Pytorch Documentations.

以上这篇pytorch动态网络以及权重共享实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

详解Python中的内建函数,可迭代对象,迭代器

详解Python中的内建函数,可迭代对象,迭代器

Python中的内建函数和可迭代对象,迭代器 求值标识 id() #标识id 返回对象的唯一标识,CPython返回内存地址 hash() #哈希, 返回对象的哈希值 le...

Python MySQL数据库连接池组件pymysqlpool详解

Python MySQL数据库连接池组件pymysqlpool详解

引言 pymysqlpool (本地下载)是数据库工具包中新成员,目的是能提供一个实用的数据库连接池中间件,从而避免在应用中频繁地创建和释放数据库连接资源。 功能 连接池本...

PyCharm专业最新版2019.1安装步骤(含激活码)

PyCharm专业最新版2019.1安装步骤(含激活码)

Pycharm是一款很好用的python开发工具,开发Python爬虫和Python web方面都很不错 这里我为大家提供了两种pycharm激活方式 分别为:2020年、2089年、...

Python的ORM框架SQLAlchemy入门教程

SQLAlchemy的理念是,SQL数据库的量级和性能重要于对象集合;而对象集合的抽象又重要于表和行。一 安装 SQLAlchemy复制代码 代码如下:pip install sqlal...

python 字典操作提取key,value的方法

python 字典操作提取key,value的方法

python 字典操作提取key,value dictionaryName[key] = value 1.为字典增加一项 2.访问字典中的值 3、删除字典中的一项...