Pytorch DataLoader 变长数据处理方式

yipeiwu_com6年前Python基础

关于Pytorch中怎么自定义Dataset数据集类、怎样使用DataLoader迭代加载数据,这篇官方文档已经说得很清楚了,这里就不在赘述。

现在的问题:有的时候,特别对于NLP任务来说,输入的数据可能不是定长的,比如多个句子的长度一般不会一致,这时候使用DataLoader加载数据时,不定长的句子会被胡乱切分,这肯定是不行的。

解决方法是重写DataLoader的collate_fn,具体方法如下:

# 假如每一个样本为:
sample = {
	# 一个句子中各个词的id
	'token_list' : [5, 2, 4, 1, 9, 8],
	# 结果y
	'label' : 5,
}


# 重写collate_fn函数,其输入为一个batch的sample数据
def collate_fn(batch):
	# 因为token_list是一个变长的数据,所以需要用一个list来装这个batch的token_list
  token_lists = [item['token_list'] for item in batch]
  
  # 每个label是一个int,我们把这个batch中的label也全取出来,重新组装
  labels = [item['label'] for item in batch]
  # 把labels转换成Tensor
  labels = torch.Tensor(labels)
  return {
    'token_list': token_lists,
    'label': labels,
  }


# 在使用DataLoader加载数据时,注意collate_fn参数传入的是重写的函数
DataLoader(trainset, batch_size=4, shuffle=True, num_workers=4, collate_fn=collate_fn)

使用以上方法,可以保证DataLoader能Load出一个batch的数据,load出来的东西就是重写的collate_fn函数最后return出来的字典。

以上这篇Pytorch DataLoader 变长数据处理方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

如何用Python实现简单的Markdown转换器

如何用Python实现简单的Markdown转换器

今天心血来潮,写了一个 Markdown 转换器。 import os, re,webbrowser text = ''' # TextHeader ## Header1 Li...

Python 切分数组实例解析

这篇文章主要介绍了Python 切分数组实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 将一个数组,均分为多个数组 代码...

Python中psutil的介绍与用法

psutil简介 psutil是一个跨平台库(http://pythonhosted.org/psutil/)能够轻松实现获取系统运行的进程和系统利用率(包括CPU、内存、磁盘、网络等...

深入理解python中的浅拷贝和深拷贝

深入理解python中的浅拷贝和深拷贝

在讲什么是深浅拷贝之前,我们先来看这样一个现象: a = ['scolia', 123, [], ] b = a[:] b[2].append(666) print a print...

python 实现视频 图像帧提取

如下所示: import cv2 vidcap = cv2.VideoCapture('005.avi') success,image = vidcap.read() count =...