解决Pytorch 加载训练好的模型 遇到的error问题

yipeiwu_com6年前Python基础

这是一个非常愚蠢的错误

debug的时候要好好看error信息

提醒自己切记好好对待error!切记!切记!

-----------------------分割线----------------

pytorch 已经非常友好了 保存模型和加载模型都只需要一条简单的命令

#保存整个网络和参数
torch.save(your_net, 'save_name.pkl')
#加载保存的模型
net = torch.load('save_name.pkl')

因为我比较懒我就想直接把整个网络都保存下来,然后在test文件中直接load一下不就好了?

就遭受了这样的错误。看错了error信息,把‘Net'看成‘net'。报错没有属性‘net'?这个不是我自己写的变量名么?

-----------------瞎捣鼓1h后(呵呵呵)----------------

回头看error,没有属性‘Net',Net???

我当下明白过来,应该是test文件中没有把它import进来,test中就没有任何关于Net的信息。我直接把定义的Net复制进了test.py,就顺利加载了训练好的模型。

但是我也有一个疑问,我理解的把整个模型保存难道不是把它的结构都保存下来了么?为什么还要再把这个网络import一次?来自python、pytorch、面向对象编程三次元小白的疑惑,先存个疑,搞懂了再来回答。

接下来试试只保存网络参数

#只保存网络参数
torch.save(your_net.state_dict(), 'save_name.pkl')
#加载保存的模型
net.load_state_dict(torch.load('save_name.pkl'))

保存网络参数

重新定义网络

报错

想死。。。

仔细看了报错信息,以我小白的理解,我感觉保存下来的可能只是单纯的数据,而不是一个对象(没有方法可以操作),或者该对象没有.copy()方法,所以没有办法进行.copy(),那肯定是保存哪里出错了。然后发现保存部分代码写错了,改成

print一下 net.state_dict和net.state_dict(),前者输出的是网络结构,后者才是网络的参数。

试着回答之前的问题,第二种保存模型的方法只保存了网络的参数(包括卷积层和全连接层每次的weight,bias),所以再加载模型的时候需要先定义网络无可厚非,就像训练时候定义网络那样定义就可以;而第一种保存整个网络的方法,保存了一个网络的实例(包括它的所有结构和参数),net是Net的一个实例,那为什么还要有Class Net的定义呢,还是回答不了。。

那就继续存疑,保持探究精神吧。。

以上这篇解决Pytorch 加载训练好的模型 遇到的error问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python3实现点餐系统

本文实例为大家分享了python3实现点餐系统的具体代码,供大家参考,具体内容如下 题目:     某餐厅外卖每天更新菜品,但是搭配价格是不变的,具体如下: &nbs...

利用rest framework搭建Django API过程解析

利用rest framework搭建Django API过程解析

思路步骤: 创建一个可以序列化的类 去数据库取数据交给序列化的类处理 把序列化的数据返回前端 操作流程: # 安装模块 pip install djangorestfra...

Python 实现字符串中指定位置插入一个字符

如下所示: str_1='wo shi yi zhi da da niu/n'str_list=list(str_1) nPos=str_list.index('/') str_li...

python 命令行传入参数实现解析

python 命令行传入参数实现解析

创建 test.py 文件,代码如下: #!/usr/bin/python # -*- coding: gbk -*- import sys print sys.argv if __...

使用python打印十行杨辉三角过程详解

使用python打印十行杨辉三角过程详解

杨辉三角,是二项式系数在三角形中的一种几何排列 每个数等于它上方两数之和。 每行数字左右对称,由1开始逐渐变大。 第n行的数字有n项。 第n行数字和为2n-1。 第...