pytorch 实现张量tensor,图片,CPU,GPU,数组等的转换

yipeiwu_com6年前Python基础

1, 创建pytorch 的Tensor张量:

torch.rand((3,224,224)) #创建随机值的三维张量,大小为(3,224,224)
 
torch.Tensor([3,2]) #创建张量,[3,2]

2, cpu上的tensor和GPU即pytorch创建的tensor的相互转化

b = a.cpu() # GPU → CPU
 
a = b.cuda() #CPU → GPU

3, tensor和numpy的转化

b = a.numpy() # tensor转化为 numpy数组
 
a = b.from_numpy() # numpy数组转化为tensor

4, torch的GPU tensor保存为图片

import scipy.misc
 
scipy.misc.imsave(‘pic_name',img) #img为二维张量,比如(224,224),保存为黑白图

5, 堆叠矩阵,形成彩色图片

img = np.stack((ia,b,c),dim) #堆叠矩阵a,b,c 可用于三通道图像的保存 dim表示要增加的维度,
#比如a,b,c均为(224,224)大小的矩阵,那么令dim=-1,则 img的维度为(224,224,3)

6, 从numpy数组保存图片

from PIL import Image
 
im = Image.fromarray(A)
 
im.save("your_file.jpeg")

7, 读取图片为矩阵:

import matplotlib.image
im = matplotlib.image.imread('0_0.jpg')

8, 保存矩阵为图片:

import numpy as np
import scipy.misc
 
x = np.random.random((600,800,3))
scipy.misc.imsave('meelo.jpg', x)

以上这篇pytorch 实现张量tensor,图片,CPU,GPU,数组等的转换就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python面向对象法实现图书管理系统

python面向对象法实现图书管理系统

本文实例为大家分享了python实现图书管理系统的具体代码,供大家参考,具体内容如下 需求: 图书管理系统 1.查询图书 2.增加图书 3.借阅图书 4.归还图书 5.退出系统 书:...

Python数据结构与算法之完全树与最小堆实例

本文实例讲述了Python数据结构与算法之完全树与最小堆。分享给大家供大家参考,具体如下: # 完全树 最小堆 class CompleteTree(list): def sif...

django settings.py 配置文件及介绍

django settings.py 配置文件及介绍

django settings.py 配置文件 import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspat...

python 3.6.7实现端口扫描器

本文实例为大家分享了python 3.6.7端口扫描器的具体代码,供大家参考,具体内容如下 环境:python 3.6.7 # -*- coding: utf-8 -*- impor...

简单谈谈python中的Queue与多进程

简单谈谈python中的Queue与多进程

最近接触一个项目,要在多个虚拟机中运行任务,参考别人之前项目的代码,采用了多进程来处理,于是上网查了查python中的多进程 一、先说说Queue(队列对象) Queue是python中...