PyTorch使用cpu加载模型运算方式

yipeiwu_com6年前Python基础

没gpu没cuda支持的时候加载模型到cpu上计算

model = torch.load(path, map_location=lambda storage, loc: storage.cuda(device))

改为

model = torch.load(path, map_location='cpu')

然后删掉所有变量后面的.cuda()方法

以上这篇PyTorch使用cpu加载模型运算方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

使用anaconda的pip安装第三方python包的操作步骤

相比于原生的python开发核心包,Anaconda已经集成了许多的第三方库,但是这在实际应用中是远远不够的,因此我们需要手动安装第三方库 使用pip可以快速的安装这些库 启动anaco...

优化Python代码使其加快作用域内的查找

我将示范微优化(micro optimization)如何提升python代码5%的执行速度。5%!同时也会触怒任何维护你代码的人。 但实际上,这篇文章只是解释一下你偶尔会在标准库或者其...

使用Python装饰器在Django框架下去除冗余代码的教程

 Python装饰器是一个消除冗余的强大工具。随着将功能模块化为大小合适的方法,即使是最复杂的工作流,装饰器也能使它变成简洁的功能。 例如让我们看看Django web框架,该...

关于Python中异常(Exception)的汇总

前言 Exception类是常用的异常类,该类包括StandardError,StopIteration, GeneratorExit, Warning等异常类。python中的异常使用...

Python生成随机数的方法

如果你对在Python生成随机数与random模块中最常用的几个函数的关系与不懂之处,下面的文章就是对Python生成随机数与random模块中最常用的几个函数的关系,希望你会有所收获,...