np.random.seed() 的使用详解

yipeiwu_com6年前Python基础

在学习人工智能时,大量的使用了np.random.seed(),利用随机数种子,使得每次生成的随机数相同。

我们带着2个问题来进行下列实验

  1. np.random.seed()是否一直有效
  2. np.random.seed(Argument)的参数作用?

例子1

import numpy as np
 
if __name__ == '__main__':
 i = 0
 while (i < 6):
  if (i < 3):
   np.random.seed(0)
   print(np.random.randn(1, 5))
  else:
   print(np.random.randn(1, 5))
   pass
  i += 1
 
 print("-------------------")
 i = 0
 while (i < 2):
  print(np.random.randn(1, 5))
  i += 1
 print(np.random.randn(2, 5))
 
 print("---------重置----------")
 np.random.seed(0)
 i = 0
 while (i < 8):
  print(np.random.randn(1, 5))
  i += 1

可以看出,np.random.seed()对后面的随机数一直有效。

两次利用随机数种子后,即便是跳出循环后,生成随机数的结果依然是相同的。第一次跳出while循环后,进入第二个while循环,得到的两个随机数组确实和加了随机数种子不一样。但是,后面的加了随机数种子的,八次循环中的结果和前面的结果是一样的。说明,随机数种子对后面的结果一直有影响。同时,加了随机数种子以后,后面的随机数组都是按一定的顺序生成的。

例子2,随机数种子参数的作用

import numpy as np
 
if __name__ == '__main__':
 i = 0
 np.random.seed(0)
 while (i < 3):
  print(np.random.randn(1, 5))
  i += 1
 i = 0
 print("---------------------")
 np.random.seed(1)
 i = 0
 while (i < 3):
  print(np.random.randn(1, 5))
  i += 1

当随机数种子参数为0和1时,生成的随机数结果相同。说明该参数指定了一个随机数生成的起始位置。每个参数对应一个位置。并且在该参数确定后,其后面的随机数的生成顺序也就确定了。

所以,随机数种子的参数怎么选择?这个参数只是确定一下随机数的起始位置,可随意分配。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

django多种支付、并发订单处理实例代码

django实现多种支付方式 ''' #思路 我们希望,通过插拔的方式来实现多方式登录,比如新增一种支付方式,那么只要在项目中新增一个py文件,导入里面的pay方法就可以了...

python使用threading获取线程函数返回值的实现方法

threading用于提供线程相关的操作,线程是应用程序中工作的最小单元。python当前版本的多线程库没有实现优先级、线程组,线程也不能被停止、暂停、恢复、中断。 threading模...

Python 描述符(Descriptor)入门

很久都没写 Flask 代码相关了,想想也真是惭愧,然并卵,这次还是不写 Flask 相关,不服你来打我啊(就这么贱,有本事咬我啊 这次我来写一下 Python 一个很重要的东西,即 D...

基于numpy.random.randn()与rand()的区别详解

numpy 中有一些常用的用来产生随机数的函数,randn()和rand()就属于这其中。 numpy.random.randn(d0, d1, …, dn) 是从标准正态分布中返回一个...

PyTorch线性回归和逻辑回归实战示例

PyTorch线性回归和逻辑回归实战示例

线性回归实战 使用PyTorch定义线性回归模型一般分以下几步: 1.设计网络架构 2.构建损失函数(loss)和优化器(optimizer) 3.训练(包括前馈(forward...