np.random.seed() 的使用详解

yipeiwu_com6年前Python基础

在学习人工智能时,大量的使用了np.random.seed(),利用随机数种子,使得每次生成的随机数相同。

我们带着2个问题来进行下列实验

  1. np.random.seed()是否一直有效
  2. np.random.seed(Argument)的参数作用?

例子1

import numpy as np
 
if __name__ == '__main__':
 i = 0
 while (i < 6):
  if (i < 3):
   np.random.seed(0)
   print(np.random.randn(1, 5))
  else:
   print(np.random.randn(1, 5))
   pass
  i += 1
 
 print("-------------------")
 i = 0
 while (i < 2):
  print(np.random.randn(1, 5))
  i += 1
 print(np.random.randn(2, 5))
 
 print("---------重置----------")
 np.random.seed(0)
 i = 0
 while (i < 8):
  print(np.random.randn(1, 5))
  i += 1

可以看出,np.random.seed()对后面的随机数一直有效。

两次利用随机数种子后,即便是跳出循环后,生成随机数的结果依然是相同的。第一次跳出while循环后,进入第二个while循环,得到的两个随机数组确实和加了随机数种子不一样。但是,后面的加了随机数种子的,八次循环中的结果和前面的结果是一样的。说明,随机数种子对后面的结果一直有影响。同时,加了随机数种子以后,后面的随机数组都是按一定的顺序生成的。

例子2,随机数种子参数的作用

import numpy as np
 
if __name__ == '__main__':
 i = 0
 np.random.seed(0)
 while (i < 3):
  print(np.random.randn(1, 5))
  i += 1
 i = 0
 print("---------------------")
 np.random.seed(1)
 i = 0
 while (i < 3):
  print(np.random.randn(1, 5))
  i += 1

当随机数种子参数为0和1时,生成的随机数结果相同。说明该参数指定了一个随机数生成的起始位置。每个参数对应一个位置。并且在该参数确定后,其后面的随机数的生成顺序也就确定了。

所以,随机数种子的参数怎么选择?这个参数只是确定一下随机数的起始位置,可随意分配。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

PyCharm中代码字体大小调整方法

PyCharm中代码字体大小调整方法

Python的火也引发了Python编辑器的火,那么作为Python编辑器的PyCharm对于代码字体大小该怎么调整呢,小编此次就带给大家调整方法 首先在桌面找到PyCharm软件打开,...

Python 12306抢火车票脚本

本文实例为大家分享了Python 12306抢火车票的具体代码,供大家参考,具体内容如下 # -*- coding: utf-8 -*- from splinter.browser...

python实现俄罗斯方块游戏

python实现俄罗斯方块游戏

在公司实习。公司推崇Python和Django框架,所以也得跟着学点。 简单瞅了下Tkinter,和Canvas配合在一起,还算是简洁的界面开发API。threading.Thread创...

简单了解python PEP的一些知识

简单了解python PEP的一些知识

前言 或许你是一个初入门Python的小白,完全不知道PEP是什么。又或许你是个学会了Python的熟手,见过几个PEP,却不知道这玩意背后是什么。那正好,本文将系统性地介绍一下PEP,...

python使用PIL和matplotlib获取图片像素点并合并解析

python使用PIL和matplotlib获取图片像素点并合并解析

python 版本 3.x 首先安装 PIL 由于PIL仅支持到Python 2.7,加上年久失修,于是一群志愿者在PIL的基础上创建了兼容的版本,名字叫Pillow,支持最新Pytho...