pytorch-神经网络拟合曲线实例

yipeiwu_com6年前Python基础

代码已经调通,跑出来的效果如下:

# coding=gbk
import torch
import matplotlib.pyplot as plt
from torch.autograd import Variable
import torch.nn.functional as F
 
'''
 Pytorch是一个拥有强力GPU加速的张量和动态构建网络的库,其主要构建是张量,所以可以把PyTorch当做Numpy
 来用,Pytorch的很多操作好比Numpy都是类似的,但是其能够在GPU上运行,所以有着比Numpy快很多倍的速度。
 训练完了,发现隐层越大,拟合的速度越是快,拟合的效果越是好
'''
 
def train():
 print('------  构建数据集  ------')
 # torch.linspace是为了生成连续间断的数据,第一个参数表示起点,第二个参数表示终点,第三个参数表示将这个区间分成平均几份,即生成几个数据
 x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
 #torch.rand返回的是[0,1]之间的均匀分布 这里是使用一个计算式子来构造出一个关联结果,当然后期要学的也就是这个式子
 y = x.pow(2) + 0.2 * torch.rand(x.size())
 # Variable是将tensor封装了下,用于自动求导使用
 x, y = Variable(x), Variable(y)
 #绘图展示
 plt.scatter(x.data.numpy(), y.data.numpy())
 #plt.show()
 
 print('------  搭建网络  ------')
 #使用固定的方式继承并重写 init和forword两个类
 class Net(torch.nn.Module):
  def __init__(self,n_feature,n_hidden,n_output):
   #初始网络的内部结构
   super(Net,self).__init__()
   self.hidden=torch.nn.Linear(n_feature,n_hidden)
   self.predict=torch.nn.Linear(n_hidden,n_output)
  def forward(self, x):
   #一次正向行走过程
   x=F.relu(self.hidden(x))
   x=self.predict(x)
   return x
 net=Net(n_feature=1,n_hidden=1000,n_output=1)
 print('网络结构为:',net)
 
 print('------  启动训练  ------')
 loss_func=F.mse_loss
 optimizer=torch.optim.SGD(net.parameters(),lr=0.001)
 
 #使用数据 进行正向训练,并对Variable变量进行反向梯度传播 启动100次训练
 for t in range(10000):
  #使用全量数据 进行正向行走
  prediction=net(x)
  loss=loss_func(prediction,y)
  optimizer.zero_grad() #清除上一梯度
  loss.backward() #反向传播计算梯度
  optimizer.step() #应用梯度
 
  #间隔一段,对训练过程进行可视化展示
  if t%5==0:
   plt.cla()
   plt.scatter(x.data.numpy(),y.data.numpy()) #绘制真是曲线
   plt.plot(x.data.numpy(),prediction.data.numpy(),'r-',lw=5)
   plt.text(0.5,0,'Loss='+str(loss.data[0]),fontdict={'size':20,'color':'red'})
   plt.pause(0.1)
 plt.ioff()
 plt.show()
 print('------  预测和可视化  ------')
 
if __name__=='__main__':
 train()

以上这篇pytorch-神经网络拟合曲线实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

对python3新增的byte类型详解

对python3新增的byte类型详解

在python2中字节类型同字符类型区分不大,但是在python3中最重要的特性是对文本和二进制数据做了更加清晰的区分,文本总是Unicode,由字符类型表示,而二进制数据则由byte类...

一个基于flask的web应用诞生 bootstrap框架美化(3)

一个基于flask的web应用诞生 bootstrap框架美化(3)

经过上一章的内容,其实就页面层来说已结可以很轻松的实现功能了,但是很明显美观上还有很大的欠缺,现在有一些很好的前端css框架,如AmazeUI,腾讯的WeUI等等,这里推荐一个和flas...

python 函数的缺省参数使用注意事项分析

本文实例讲述了python 函数的缺省参数使用注意事项。分享给大家供大家参考,具体如下: python的函数支持4种形式的参数:分别是必选参数、 缺省参数、 可变长参数、关键字参数;而且...

python导入时小括号大作用

在导入Python模块时,我们可以用 import os 也可以用 from os import * 当然,不推荐第二种方法,这样,会导入太多的os模块内的函数,所以...

python pandas时序处理相关功能详解

创建时间序列 函数pd.date_range() 根据指定的范围,生成时间序列DatetimeIndex,每隔元素的类型为Timestamp。该函数应用较多。 ts = pd....