浅谈pytorch、cuda、python的版本对齐问题

yipeiwu_com6年前Python基础

在使用深度学习模型训练的过程中,工具的准备也算是一个良好的开端吧。熟话说完事开头难,磨刀不误砍柴工,先把前期的问题搞通了,能为后期节省不少精力。

以pytorch工具为例:

pytorch版本为1.0.1,自带python版本为3.6.2

服务器上GPU的CUDA_VERSION=9000

注意:由于GPU上的CUDA_VERSION为9000,所以至少要安装cuda版本>=9.0,虽然cuda=7.0~8.0也能跑,但是一开始可能会遇到各种各样的问题,本人cuda版本为10.0,安装cuda的命令为:

conda install cudatoolkit=10.0

注:GPU显卡驱动一般没什么问题,所以尽量不要动cudnn的版本。

以上这篇浅谈pytorch、cuda、python的版本对齐问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现快速计算词频功能示例

本文实例讲述了Python实现快速计算词频功能。分享给大家供大家参考,具体如下: 这几天看到一位同事的代码,方法如下: def cut_word(body): temp_dict...

使用Python装饰器在Django框架下去除冗余代码的教程

 Python装饰器是一个消除冗余的强大工具。随着将功能模块化为大小合适的方法,即使是最复杂的工作流,装饰器也能使它变成简洁的功能。 例如让我们看看Django web框架,该...

PYQT5实现控制台显示功能的方法

PYQT5实现控制台显示功能的方法

界面文件 Ui_ControlBoard.py # -*- coding: utf-8 -*- # Form implementation generated from read...

python3实现短网址和数字相互转换的方法

本文实例讲述了python3实现短网址和数字相互转换的方法。分享给大家供大家参考。具体实现方法如下: import math import decimal def convert_t...

Python multiprocessing.Manager介绍和实例(进程间共享数据)

Python中进程间共享数据,处理基本的queue,pipe和value+array外,还提供了更高层次的封装。使用multiprocessing.Manager可以简单地使用这些高级接...