python opencv根据颜色进行目标检测的方法示例

yipeiwu_com6年前Python基础

颜色目标检测就是根据物体的颜色快速进行目标定位。使用cv2.inRange函数设定合适的阈值,即可以选出合适的目标。

建立项目colordetect.py,代码如下:

#! /usr/bin/env python
# -*- coding: utf-8 -*-

import numpy as np
import cv2

def colorDetect():
 image = cv2.imread('./1.png')
 # 使用RGB颜色空间检测红 蓝 黄 灰,设置合适的阈值
 boundaries = [
 ([17, 15, 100], [50, 56, 200]),
 ([86, 31, 4], [220, 88, 50]),
 ([25, 146, 190], [62, 174, 250]),
 ([103, 86, 65], [145, 133, 128])
 ]

 for lower, upper in boundaries:
 lower = np.array(lower, dtype='uint8')
 upper = np.array(upper, dtype='uint8')
 # 低于lower和高于upper的像素为黑色,lower-upper之间的像素为白色
 mask = cv2.inRange(image, lower, upper)
 # 利用蒙版,进行图像的逻辑与运算
 output = cv2.bitwise_and(image, image, mask=mask)

 cv2.imshow('image', np.hstack([image, output]))
 cv2.waitKey(0)
 cv2.destroyAllWindows()

def main():
 colorDetect()

if __name__ == "__main__":
 main()

定义RGB颜色列表:

boundaries = [
 ([17, 15, 100], [50, 56, 200]),
 ([86, 31, 4], [220, 88, 50]),
 ([25, 146, 190], [62, 174, 250]),
 ([103, 86, 65], [145, 133, 128])
]

该部分([17, 15, 100], [50, 56, 200]),表示图像像素R>=100, B>=15, G>=15和R<=200, B<=56, G<=50的像素将视为红色。

执行代码,结果如下:

总结

要检测图像中颜色,第一件事要做的就是定义像素值的上限和下限。不同的颜色空间具有不同上下限值,定义了上限和下限后,就可以调用cv2.inRange方法返回一个mask,将该mask与图像进行逻辑与bitwise_and就可以得到该图像。

参考资料
https://www.pyimagesearch.com/

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

使用opencv将视频帧转成图片输出

使用opencv将视频帧转成图片输出

本文做的是基于opencv将视频帧转成图片输出,由于一个视频包含的帧数过多,经常我们并不是需要它的全部帧转成图片,因此我们希望可以设置每隔多少帧再转一次图片(本文设置为30帧),若有人需...

Python中的条件判断语句与循环语句用法小结

if语句 >>通用格式 if语句一般形式如下: if <test1>: <statements1> elif <test2>: &...

python实现下载整个ftp目录的方法

前言 最近因为业务需求,就写了这个脚本,脚本完成的任务是从FTP上下载一个目录,大家都知道从FTP上下载一个文件可用用get命令,下载多个文件可以用mget,但你要下载一个目录,对不起,...

Python 实现try重新执行

Python try重新执行: def numberinput(): #创建方法 try: s=int(input('number:')) return s...

Python 多线程Threading初学教程

Python 多线程Threading初学教程

1.1 什么是多线程 Threading 多线程可简单理解为同时执行多个任务。 多进程和多线程都可以执行多个任务,线程是进程的一部分。线程的特点是线程之间可以共享内存和变量,资源消耗少(...