计算pytorch标准化(Normalize)所需要数据集的均值和方差实例

yipeiwu_com6年前Python基础

pytorch做标准化利用transforms.Normalize(mean_vals, std_vals),其中常用数据集的均值方差有:

if 'coco' in args.dataset:
  mean_vals = [0.471, 0.448, 0.408]
  std_vals = [0.234, 0.239, 0.242]
elif 'imagenet' in args.dataset:
  mean_vals = [0.485, 0.456, 0.406]
  std_vals = [0.229, 0.224, 0.225]

计算自己数据集图像像素的均值方差:

import numpy as np
import cv2
import random
 
# calculate means and std
train_txt_path = './train_val_list.txt'
 
CNum = 10000   # 挑选多少图片进行计算
 
img_h, img_w = 32, 32
imgs = np.zeros([img_w, img_h, 3, 1])
means, stdevs = [], []
 
with open(train_txt_path, 'r') as f:
  lines = f.readlines()
  random.shuffle(lines)  # shuffle , 随机挑选图片
 
  for i in tqdm_notebook(range(CNum)):
    img_path = os.path.join('./train', lines[i].rstrip().split()[0])
 
    img = cv2.imread(img_path)
    img = cv2.resize(img, (img_h, img_w))
    img = img[:, :, :, np.newaxis]
    
    imgs = np.concatenate((imgs, img), axis=3)
#     print(i)
 
imgs = imgs.astype(np.float32)/255.
 
 
for i in tqdm_notebook(range(3)):
  pixels = imgs[:,:,i,:].ravel() # 拉成一行
  means.append(np.mean(pixels))
  stdevs.append(np.std(pixels))
 
# cv2 读取的图像格式为BGR,PIL/Skimage读取到的都是RGB不用转
means.reverse() # BGR --> RGB
stdevs.reverse()
 
print("normMean = {}".format(means))
print("normStd = {}".format(stdevs))
print('transforms.Normalize(normMean = {}, normStd = {})'.format(means, stdevs))

以上这篇计算pytorch标准化(Normalize)所需要数据集的均值和方差实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python+Tensorflow+CNN实现车牌识别的示例代码

Python+Tensorflow+CNN实现车牌识别的示例代码

一、项目概述 本次项目目标是实现对自动生成的带有各种噪声的车牌识别。在噪声干扰情况下,车牌字符分割较困难,此次车牌识别是将车牌7个字符同时训练,字符包括31个省份简称、10个阿拉伯数字、...

Numpy对数组的操作:创建、变形(升降维等)、计算、取值、复制、分割、合并

1. 简介 NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。最主要的数据结...

Python对列表排序的方法实例分析

本文实例讲述了Python对列表排序的方法。分享给大家供大家参考。具体分析如下: 1、sort()函数 sort()函数使用固定的排序算法对列表排序。sort()函数对列表排序时改变了原...

python实现每次处理一个字符的三种方法

本文实例讲述了python每次处理一个字符的三种方法。分享给大家供大家参考。 具体方法如下: a_string = "abccdea" print 'the first' f...

Python基于回溯法子集树模板解决选排问题示例

Python基于回溯法子集树模板解决选排问题示例

本文实例讲述了Python基于回溯法子集树模板解决选排问题。分享给大家供大家参考,具体如下: 问题 从n个元素中挑选m个元素进行排列,每个元素最多可重复r次。其中m∈[2,n],r∈[1...