Pytorch 计算误判率,计算准确率,计算召回率的例子

yipeiwu_com6年前Python基础

无论是官方文档还是各位大神的论文或搭建的网络很多都是计算准确率,很少有计算误判率,

下面就说说怎么计算准确率以及误判率、召回率等指标

1.计算正确率

获取每批次的预判正确个数

train_correct = (pred == batch_y.squeeze(1)).sum()

该语句的意思是 预测的标签与实际标签相等的总数

获取训练集总的预判正确个数

train_acc += train_correct.data[0] #用来计算正确率

准确率 : train_acc / (len(train_data))

2.误判率

举例:当你是二分类时,你需要计算 原标签为1,但预测为 0 ,以及 原标签为0,预测为1的 误判率

误判率又分为:

CTW : correct to wrong 标签为正确的,预测为错误的

WTC: wrong to correct 标签为错误的,预测为正确的

zes=Variable(torch.zeros(lasize).type(torch.LongTensor))#全0变量

ons=Variable(torch.ones(lasize).type(torch.LongTensor))#全1变量

train_correct01 = ((pred==zes)&(batch_y.squeeze(1)==ons)).sum() #原标签为1,预测为 0 的总数

train_correct10 = ((pred==ons)&(batch_y.squeeze(1)==zes)).sum() #原标签为0,预测为1 的总数

train_correct11 = ((pred_y==ons)&(batch_y.squeeze(1)==ons)).sum()
train_correct00 = ((pred_y==zes)&(batch_y.squeeze(1)==zes)).sum()

获取训练集总的误判个数

FN += train_correct01.data[0]

FP += train_correct10.data[0]

TP += train_correct11.data[0]
TN += train_correct00.data[0]

误判率 :

(FN+FP)/(len(train_data)) #CTW+WTC

3.精准率和召回率


精准率: P = TP/ (TP+FP)
召回率: R = TP/ (TP+FN)


4.真正例率和假正例率

真正例率:TPR = TP/ (TP+FN)
假正例率:FPR =FP/ (FP+TN)

最后,当你要计算多分类的误判率时,只需在二分类的基础上类推即可

以上这篇Pytorch 计算误判率,计算准确率,计算召回率的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Pycharm学习教程(6) Pycharm作为Vim编辑器使用

Pycharm学习教程(6) Pycharm作为Vim编辑器使用

Pycharm作为Vim编辑器使用,具体内容如下 1、主题   如果你是Vim的粉丝,并且不打算使用其他类型的编辑器,那么这篇教程将会比较适合你。这里将会详细介绍如何在Pycharm...

Python中使用Inotify监控文件实例

Inotify地址:访问 # -*- coding:utf-8 -*- import os import pyinotify from functions import * WA...

python实现自动重启本程序的方法

python实现自动重启本程序的方法

本文实例讲述了python实现自动重启本程序的方法。分享给大家供大家参考。具体实现方法如下: #!/usr/local/bin/python #-*- coding: UTF-8 -...

使用Python判断质数(素数)的简单方法讲解

质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。素数在数论中有着很重要的地位。比1大但不是素数的数称为合数。1和0既非素数也非合数。质数是与合数相...

Python Socket实现简单TCP Server/client功能示例

本文实例讲述了Python Socket实现简单TCP Server/client功能。分享给大家供大家参考,具体如下: 网络上关于socket的介绍文章数不胜数。自己记录下学习的点点滴...