php解决约瑟夫环算法实例分析

yipeiwu_com6年前PHP代码库

本文实例讲述了php解决约瑟夫环算法。分享给大家供大家参考,具体如下:

今天偶遇一道算法题

“约瑟夫环”是一个数学的应用问题:一群猴子排成一圈,按1,2,…,n依次编号。然后从第1只开始数,数到第m只,把它踢出圈,从它后面再开始数, 再数到第m只,在把它踢出去…,如此不停的进行下去, 直到最后只剩下一只猴子为止,那只猴子就叫做大王。要求编程模拟此过程,输入m、n, 输出最后那个大王的编号。

方法一:递归算法

function killMonkey($monkeys , $m , $current = 0){
  $number = count($monkeys);
  $num = 1;
  if(count($monkeys) == 1){
    echo $monkeys[0]."成为猴王了";
    return;
  }
  else{
    while($num++ < $m){
      $current++ ;
      $current = $current%$number;
    }
    echo $monkeys[$current]."的猴子被踢掉了<br/>";
    array_splice($monkeys , $current , 1);
    killMonkey($monkeys , $m , $current);
  }
}
$monkeys = array(1 , 2 , 3 , 4 , 5 , 6 , 7, 8 , 9 , 10); //monkeys的编号
$m = 3; //数到第几只猴子被踢出
killMonkey($monkeys , $m);

运行结果:

3的猴子被踢掉了
6的猴子被踢掉了
9的猴子被踢掉了
2的猴子被踢掉了
7的猴子被踢掉了
1的猴子被踢掉了
8的猴子被踢掉了
5的猴子被踢掉了
10的猴子被踢掉了
4成为猴王了

方法二:线性表应用

最后这个算法最牛,

哦,是这样的,每个猴子出列后,剩下的猴子又组成了另一个子问题。只是他们的编号变化了。第一个出列的猴子肯定是a[1]=m(mod)n(m/n的余数),他除去后剩下的猴子是a[1]+1,a[1]+2,…,n,1,2,…a[1]-2,a[1]-1,对应的新编号是1,2,3…n-1。设此时某个猴子的新编号是i,他原来的编号就是(i+a[1])%n。于是,这便形成了一个递归问题。假如知道了这个子问题(n-1个猴子)的解是x,那么原问题(n个猴子)的解便是:(x+m%n)%n=(x+m)%n。问题的起始条件:如果n=1,那么结果就是1。

function yuesefu($n,$m) {
  $r=0;
  for($i=2; $i<=$n; $i++) {
    $r=($r+$m)%$i;
  }
  return $r+1;
}
echo yuesefu(10,3)."是猴王";

运行结果:

4是猴王

更多关于PHP相关内容感兴趣的读者可查看本站专题:《PHP数据结构与算法教程》、《php程序设计算法总结》、《php字符串(string)用法总结》、《PHP数组(Array)操作技巧大全》、《PHP常用遍历算法与技巧总结》及《PHP数学运算技巧总结

希望本文所述对大家PHP程序设计有所帮助。

相关文章

php关于array_multisort多维数组排序的使用说明

一、先看最简单的情况。有两个数组: 复制代码 代码如下: $arr1 = array(1,9,5); $arr2 = array(6,2,4); array_multisort($arr...

PHP 观察者模式的实现代码

代码如下所示:复制代码 代码如下://被察者抽象类class Observed implements SplSubject{    protected $_...

C#静态方法与非静态方法实例分析

本文实例分析了C#静态方法与非静态方法,并对其用法进行了较为全面的分析。分享给大家供大家参考。具体分析如下: 通常来说,C#的类中可以包含两种方法:静态方法和非静态方法。 使用了stat...

PHP+redis实现的购物车单例类示例

本文实例讲述了PHP+redis实现的购物车单例类。分享给大家供大家参考,具体如下: <?php /** * 购物车单例类 * * @author YING *...

PHP实现重载的常用方法实例详解

本文实例讲述了PHP实现重载的常用方法。分享给大家供大家参考,具体如下: php是弱类型语言,并没有像JAVA这种强类型语言一样有重载。 重载一般来说就是拥有相同的函数名或方法名,但是参...