python networkx 根据图的权重画图实现

yipeiwu_com5年前Python基础

首先输入边和边的权重,随后画出节点位置,根据权重大小划分实边和虚边

#coding:utf-8
#!/usr/bin/env python
"""
An example using Graph as a weighted network.
"""
__author__ = """Aric Hagberg (hagberg@lanl.gov)"""
try:
  import matplotlib.pyplot as plt
except:
  raise
 
import networkx as nx
 
G=nx.Graph()
#添加带权边
G.add_edge('a','b',weight=0.6)
G.add_edge('a','c',weight=0.2)
G.add_edge('c','d',weight=0.1)
G.add_edge('c','e',weight=0.7)
G.add_edge('c','f',weight=0.9)
G.add_edge('a','d',weight=0.3)
#按权重划分为重权值得边和轻权值的边
elarge=[(u,v) for (u,v,d) in G.edges(data=True) if d['weight'] >0.5]
esmall=[(u,v) for (u,v,d) in G.edges(data=True) if d['weight'] <=0.5]
#节点位置
pos=nx.spring_layout(G) # positions for all nodes
#首先画出节点位置
# nodes
nx.draw_networkx_nodes(G,pos,node_size=700)
#根据权重,实线为权值大的边,虚线为权值小的边
# edges
nx.draw_networkx_edges(G,pos,edgelist=elarge,
          width=6)
nx.draw_networkx_edges(G,pos,edgelist=esmall,
          width=6,alpha=0.5,edge_color='b',style='dashed')
 
# labels标签定义
nx.draw_networkx_labels(G,pos,font_size=20,font_family='sans-serif')
 
plt.axis('off')
plt.savefig("weighted_graph.png") # save as png
plt.show() # display

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python Web框架Flask信号机制(signals)介绍

信号(signals) Flask信号(signals, or event hooking)允许特定的发送端通知订阅者发生了什么(既然知道发生了什么,那我们可以知道接下来该做什么了)。...

详解如何从TensorFlow的mnist数据集导出手写体数字图片

详解如何从TensorFlow的mnist数据集导出手写体数字图片

在TensorFlow的官方入门课程中,多次用到mnist数据集。 mnist数据集是一个数字手写体图片库,但它的存储格式并非常见的图片格式,所有的图片都集中保存在四个扩展名为idx3-...

python 把文件中的每一行以数组的元素放入数组中的方法

有时候需要把文件中的数据放入到数组中,这里提供了一种方法,可以根据文件结尾的标记进行数据拆分,然后再把拆分的文件放入数组中 # -*-coding: utf-8 -*- f = op...

python网络编程 使用UDP、TCP协议收发信息详解

UDP UDP是面向无连接的通讯协议,UDP数据包括目的端口号和源端口号信息,由于通讯不需要连接,所以可以实现广播发送。 UDP传输数据时有大小限制,每个被传输的数据报必须限定在64KB...

softmax及python实现过程解析

softmax及python实现过程解析

相对于自适应神经网络、感知器,softmax巧妙低使用简单的方法来实现多分类问题。 功能上,完成从N维向量到M维向量的映射 输出的结果范围是[0, 1],对于一个sample的...