基于python3 OpenCV3实现静态图片人脸识别

yipeiwu_com5年前Python基础

本文采用OpenCV3和Python3 来实现静态图片的人脸识别,采用的是Haar文件级联。

首先需要将OpenCV3源代码中找到data文件夹下面的haarcascades文件夹里面包含了所有的OpenCV的人脸检测的XML文件,这些文件可以用于检测静态,视频文件,摄像头视频流中的人脸,找到haarcascades文件夹后,复制里面的XML文件,在你新建的Python脚本文件目录里面建一个名为cascades的文件夹,并把复制的XML文件粘贴到新建的文件夹中一些有人脸的的图片,这个大家可以自行百度。

创建一个识别人脸的函数detect()

def detect(img):
 #函数声明了一个face_cascade的变量,该变量为CascadeClassifier的对象,用于检测人脸(frontalface)
 face_cascade = cv2.CascadeClassifier('./cascades/haarcascade_frontalface_default.xml')
 #进行灰度化处理
 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
 #进行实际的人脸检测,传递参数是scaleFactor和minNeighbor,分别表示人脸检测过程中每次迭代时图像的压缩率和每个人脸矩形保留近邻数目的最小值
 faces = face_cascade.detectMultiScale(gray,1.3,5)
 for (x,y,w,h) in faces:
 #依次提取faces变量中的值来画矩形
 img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,255),2)
 cv2.imshow('face_track',img)
 #避免图形窗口关闭
 cv2.waitKey(0)

上面就是主要的函数,当然你也可以不用函数,直接写在while循环里面,下面是完整的程序代码

import cv2

filename = cv2.imread('face_2.jpg')

def detect(img):
 face_cascade = cv2.CascadeClassifier('./cascades/haarcascade_frontalface_default.xml')
 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
 faces = face_cascade.detectMultiScale(gray,1.3,5)
 for (x,y,w,h) in faces:
 img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,255),2)
 cv2.imshow('face_track',img)
 cv2.waitKey(0)

if __name__ == "__main__":
 detect(filename)

运行结果

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

使用Python导出Excel图表以及导出为图片的方法

使用Python导出Excel图表以及导出为图片的方法

本篇讲下如何使用纯python代码将excel 中的图表导出为图片。这里需要使用的模块有win32com、pythoncom模块。 网上经查询有人已经写好的模块pyxlchart,具体代...

python 美化输出信息的实例

python 美化输出信息的实例

如下所示: # -*- coding: utf-8 -*- # @Author: xiaodong # @Date: just hide # @Last Modified by:...

Python使用函数默认值实现函数静态变量的方法

本文实例展示了Python使用函数默认值实现函数静态变量的方法,具体方法如下: 一、Python函数默认值 Python函数默认值的使用可以在函数调用时写代码提供方便,很多时候我们只要使...

Django 实现外键去除自动添加的后缀‘_id’

django在使用外键ForeignKey的时候,会自动给当前字段后面添加一个后缀_id。 正常来说这样并不会影响使用。除非你要写原生sql,还有就是这个表是已经存在的,你只是把数据库中...

Python GAE、Django导出Excel的方法

但GAE、Django并没有直接将pyExcelerator导出为Excel的方法。我的思路是先用把数据导入到Workbook和Worksheet中,如果存为文件可以直接调用Workbo...