解决pytorch GPU 计算过程中出现内存耗尽的问题

yipeiwu_com6年前Python基础

Pytorch GPU运算过程中会出现:“cuda runtime error(2): out of memory”这样的错误。通常,这种错误是由于在循环中使用全局变量当做累加器,且累加梯度信息的缘故,用官方的说法就是:"accumulate history across your training loop"。在默认情况下,开启梯度计算的Tensor变量是会在GPU保持他的历史数据的,所以在编程或者调试过程中应该尽力避免在循环中累加梯度信息。

下面举个栗子:

上代码:

total_loss=0
for i in range(10000):
  optimizer.zero_grad()
  output=model(input)
  loss=criterion(output)
  loss.backward()
  optimizer.step()
  total_loss+=loss
  #这里total_loss是跨越循环的变量,起着累加的作用,
  #loss变量是带有梯度的tensor,会保持历史梯度信息,在循环过程中会不断积累梯度信息到tota_loss,占用内存

以上例子的修正方法是在循环中的最后一句修改为:total_loss+=float(loss),利用类型变换解除梯度信息,这样,多次累加不会累加梯度信息。

局部变量逗留导致内存泄露

局部变量通常在变量作用域之外会被Python自动销毁,在作用域之内,不需要的临时变量可以使用del x来销毁。

在设计Linear Layers 的时候,尽量让其规模小点

对于nn.Linear(m,n)这样规模的线性函数,他的空间规模为O(mn),除此规模的空间来容纳参数意外,还需要同样规模的空间来存储梯度,由此很容易造成GPU空间溢出。

相关的进程管理bash cmd

nvidia-smi监控GPU,

watch -n 1 nvidia-smi实时监控GPU,

watch -n 1 lscpu实时监控CPU,

ps -elf进程查看,

ps -elf | grep python查看Python子进程,

kill -9 [PID]杀死进程PID。

Referance:

Pytorch documentations

以上这篇解决pytorch GPU 计算过程中出现内存耗尽的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Django中redis的使用方法(包括安装、配置、启动)

Django中redis的使用方法(包括安装、配置、启动)

一、安装redis: 1.下载: wget http://download.redis.io/releases/redis-3.2.8.tar.gz 2.解压 tar -zxv...

Python PyCharm如何进行断点调试

Python PyCharm如何进行断点调试

编辑器不等于IDE(集成开发环境),开发python程序,不是只有一种print()打印输出调试。 术业有专攻,于人如此,于一个软件也是如此。让专业的软件做专业的事。 以上两点得出的结论...

Python 函数绘图及函数图像微分与积分

Python 函数绘图及函数图像微分与积分

前言 在学校太闲,就写了这个程序,可以绘制函数图像,并且可以绘制其导函数图像和不定积分的图像,效果非常不错。 效果图 说明 1,程序无法绘制复数图像,若函数返回一个复数,将自动取模作为...

python程序运行进程、使用时间、剩余时间显示功能的实现代码

有很多程序运行时间比较长,如果不将运行过程输出将很难判断程序运行的时间。下边这段程序将按照上图所示的格式输出程序运行进程、已用时间、剩余时间。 def time_change(tim...

Python中字符串的格式化方法小结

老办法 Python2.6之前,格式字符串的使用方法相对更简单些,虽然其能够接收的参数数量有限制。这些方法在Python3.3中仍然有效,但已有含蓄的警告称将完全淘汰这些方法,目前还没有...